Question Number 12139 by tawa last updated on 14/Apr/17
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{between}\:\mathrm{the}\:\mathrm{graphs}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{10x} \\ $$$$\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:−\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{2x} \\ $$
Answered by mrW1 last updated on 15/Apr/17
$$\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{10}{x}=−{x}^{\mathrm{3}} +\mathrm{2}{x} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{12}{x}=\mathrm{0} \\ $$$${x}\left(\mathrm{4}{x}^{\mathrm{2}} −{x}−\mathrm{12}\right)=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −{x}−\mathrm{12}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}×\mathrm{4}×\mathrm{12}}}{\mathrm{2}×\mathrm{4}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{193}}}{\mathrm{8}} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}} \\ $$$${x}_{\mathrm{2}} =\mathrm{0} \\ $$$${x}_{\mathrm{3}} =\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}} \\ $$$$ \\ $$$${A}=\int_{{a}} ^{{b}} \left[{f}\left({x}\right)−{g}\left({x}\right)\right]{dx} \\ $$$$=\int_{{a}} ^{{b}} \left(\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{10}{x}+{x}^{\mathrm{3}} −\mathrm{2}{x}\right){dx} \\ $$$$=\int_{{a}} ^{{b}} \left(\mathrm{4}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{12}{x}\right){dx} \\ $$$$=\left[{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{6}{x}^{\mathrm{2}} \right]_{{a}} ^{{b}} \\ $$$$ \\ $$$${A}_{\mathrm{1}} =\mid\left[{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{6}{x}^{\mathrm{2}} \right]_{{x}_{\mathrm{1}} } ^{\mathrm{0}} \mid \\ $$$${A}_{\mathrm{1}} =\mid\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{3}} −\mathrm{6}\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} \mid \\ $$$$=\mid\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} \left[\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{193}}}{\mathrm{8}}\right)−\mathrm{6}\right]\mid \\ $$$$ \\ $$$${A}_{\mathrm{2}} =\mid\left[{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{6}{x}^{\mathrm{2}} \right]_{\mathrm{0}} ^{{x}_{\mathrm{2}} } \mid \\ $$$${A}_{\mathrm{2}} =\mid\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{3}} −\mathrm{6}\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} \mid \\ $$$$=\mid\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} \left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{193}}}{\mathrm{8}}\right)−\mathrm{6}\right]\mid \\ $$$$ \\ $$$${A}_{\mathrm{1}} +{A}_{\mathrm{2}} =\frac{\mathrm{14113}}{\mathrm{768}}\approx\mathrm{18}.\mathrm{376} \\ $$
Commented by tawa last updated on 14/Apr/17
$$\mathrm{Wow},\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by tawa last updated on 14/Apr/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
Commented by tawa last updated on 14/Apr/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by chux last updated on 15/Apr/17
$$\mathrm{wow}!\:\mathrm{please}\:\mathrm{which}\:\mathrm{calculator}\:\mathrm{did} \\ $$$$\mathrm{this}? \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Apr/17
$${hello}.\:{FSC}\:{calculator}. \\ $$
Commented by chux last updated on 16/Apr/17
$$\mathrm{thanks} \\ $$