Menu Close

find-the-asymptote-of-folium-of-Descartes-x-3-y-3-3axy-and-a-is-a-constant-gt-0-




Question Number 71739 by Tony Lin last updated on 19/Oct/19
find the asymptote of folium of   Descartes x^3 +y^3 =3axy, and a is a  constant >0
findtheasymptoteoffoliumofDescartesx3+y3=3axy,andaisaconstant>0
Answered by Tony Lin last updated on 19/Oct/19
let y=tx  ⇒x^3 +(tx)^3 =3atx^2    { ((x=((3at)/(1+t^3 )))),((y=((3at^2 )/(1+t^3 )))) :}  x→±∞⇒t→−1  let the asymptote L: mx+b  lim_(t→−1) (y/x)=−1=m  lim_(t→−1) [y−(−x)]  =lim_(x→−1) ((3at(t+1))/((t+1)(t^2 −t+1)))  =−a  =b  therefore  asymptote L:−x−a
lety=txx3+(tx)3=3atx2{x=3at1+t3y=3at21+t3x±t1lettheasymptoteL:mx+blimt1yx=1=mlimt1[y(x)]=limx13at(t+1)(t+1)(t2t+1)=a=bthereforeasymptoteL:xa
Answered by MJS last updated on 19/Oct/19
x^3 +y^3 −3axy=0  turning  x=((√2)/2)(x^∗ +y^∗ )∧y=((√2)/2)(x^∗ −y^∗ )  ((3(a+(√2)x^∗ ))/2)(y^∗ )^2 −(((3a−(√2)x^∗ )(x^∗ )^2 )/2)=0  ⇒ y^∗ =±((x^∗ (√(9a−3(√2)x^∗ )))/(3(√(a+(√2)x^∗ ))))  denominator not defined for x^∗ =−(((√2)a)/2)+0y^∗   turning back  p=((√2)/2)(x+y)∧q=((√2)/2)(x−y)  ((√2)/2)(x+y)=−(((√2)a)/2)  y=−x−a is the asymptote
x3+y33axy=0turningx=22(x+y)y=22(xy)3(a+2x)2(y)2(3a2x)(x)22=0y=±x9a32x3a+2xdenominatornotdefinedforx=2a2+0yturningbackp=22(x+y)q=22(xy)22(x+y)=2a2y=xaistheasymptote
Commented by MJS last updated on 19/Oct/19
there might be an easier path...
theremightbeaneasierpath

Leave a Reply

Your email address will not be published. Required fields are marked *