Menu Close

Find-the-coefficient-of-x-17-in-the-expansion-of-x-1-x-2-x-3-x-19-




Question Number 5003 by 314159 last updated on 30/Mar/16
Find the coefficient of x^(17)  in the expansion of  (x+1)(x+2)(x+3)...(x+19).
Findthecoefficientofx17intheexpansionof(x+1)(x+2)(x+3)(x+19).
Commented by 123456 last updated on 30/Mar/16
1+1+...+1 (17)  1+1+...+1 (17)+0  1+1+...+1 (17)+0+0  ((19!)/(17!(19−17)!))=((19∙18)/6)=19∙3=57  (57+1)+...+(57+19)=1083+190=1273  (57+1+2)+(57+1+3)...+(57+18+19)  ((19!)/(2!(19−2)!))=171
1+1++1(17)1+1++1(17)+01+1++1(17)+0+019!17!(1917)!=19186=193=57(57+1)++(57+19)=1083+190=1273(57+1+2)+(57+1+3)+(57+18+19)19!2!(192)!=171
Commented by prakash jain last updated on 31/Mar/16
  Coefficient of x^(17)  can be generated by multiplication  any 2 constant terms and remaining x terms.  =1∙2+1∙3+...+1∙19  +2.3+2.4+..+2.19  +  ...  +18∙19  =Σ_(i=1) ^(18)  i(Σ_(j=i+1) ^(19) j)  Arithmetic Progression formulas to sum.
Coefficientofx17canbegeneratedbymultiplicationany2constanttermsandremainingxterms.=12+13++119+2.3+2.4+..+2.19++1819=18i=1i(19j=i+1j)ArithmeticProgressionformulastosum.

Leave a Reply

Your email address will not be published. Required fields are marked *