Menu Close

Find-the-condition-that-one-root-of-ax-2-bx-c-0-a-0-is-square-of-the-other-




Question Number 132697 by liberty last updated on 15/Feb/21
Find the condition that one  root of ax^2 +bx+c = 0 ,a≠ 0  is square of the other .
Findtheconditionthatonerootofax2+bx+c=0,a0issquareoftheother.
Commented by liberty last updated on 16/Feb/21
okay
okay
Commented by mr W last updated on 16/Feb/21
α+α^2 =−(b/a)  α×α^2 =(c/a)  ⇒α=((c/a))^(1/3)   ⇒α(1+α)=((c/a))^(1/3) (1+((c/a))^(1/3) )=−(b/a)  ⇒(b/a)+((c/a))^(1/3) (1+((c/a))^(1/3) )=0
α+α2=baα×α2=caα=ca3α(1+α)=ca3(1+ca3)=baba+ca3(1+ca3)=0
Answered by EDWIN88 last updated on 16/Feb/21
 Suppose υ is a root and that the other one  is υ^2  . By Vietha′s rule  { ((υ+υ^2 =−(b/a))),((υ^3  = (c/a))) :}  We have υ = 0 if only if b=c=0  let we assume that υ ≠ 0   Therefore ((1+υ)/υ^2 ) = −(b/c) ⇒bυ^2 +cυ+c = 0  on the other hand we find aυ^2 +bυ+c = 0  substract the two relations we get   (a−b)υ^2 +(b−c)υ  = 0   (a−b)υ +(b−c)=0→υ=((c−b)/(a−b))  but we can the two relations multiplying   the top one by a and the bottom by b   { ((abυ^2 +acυ + ac = 0)),((abυ^2  +b^2 υ +bc = 0)) :}  subtract (ac−b^2 )υ+(ac−bc)= 0→υ=((bc−ac)/(ac−b^2 ))  that expands to a^2 c +ac^2  −3abc + b^3  = 0
Supposeυisarootandthattheotheroneisυ2.ByViethasrule{υ+υ2=baυ3=caWehaveυ=0ifonlyifb=c=0letweassumethatυ0Therefore1+υυ2=bcbυ2+cυ+c=0ontheotherhandwefindaυ2+bυ+c=0substractthetworelationsweget(ab)υ2+(bc)υ=0(ab)υ+(bc)=0υ=cbabbutwecanthetworelationsmultiplyingthetoponebyaandthebottombyb{abυ2+acυ+ac=0abυ2+b2υ+bc=0subtract(acb2)υ+(acbc)=0υ=bcacacb2thatexpandstoa2c+ac23abc+b3=0
Commented by liberty last updated on 16/Feb/21
okay
okay
Commented by EDWIN88 last updated on 16/Feb/21
let for case  { ((a=1 ; b=−2)),((c+c^2 +6c−8=0 ⇒c^2 +7c−8=0)) :}  (c+8)(c−1)=0  { ((c=−8)),((c=1)) :}  If (a,b,c)=(1,−2,−8)⇒x^2 −2x−8=0   (x−4)(x+2)=0 ⇒x_1 =4 ∧ x_2 =−2  and (−2)^2 = 4
letforcase{a=1;b=2c+c2+6c8=0c2+7c8=0(c+8)(c1)=0{c=8c=1If(a,b,c)=(1,2,8)x22x8=0(x4)(x+2)=0x1=4x2=2and(2)2=4
Answered by MJS_new last updated on 16/Feb/21
a(x−α^2 )(x−α)=0  ax^2 −aα(α+1)x+aα^3 =0  b=−aα(α+1)  c=aα^3   not sure what else you need...
a(xα2)(xα)=0ax2aα(α+1)x+aα3=0b=aα(α+1)c=aα3notsurewhatelseyouneed
Commented by liberty last updated on 16/Feb/21
relation for a,b and c sir
relationfora,bandcsir
Commented by MJS_new last updated on 16/Feb/21
a(x^2 +(b/a)x+(c/a))=0  x^2 +px+q=0  (x−α^2 )(x−α)=x^2 +px+q  ⇔  p=−α(α+1)∧q=α^3   ⇔  p+q^(2/3) +q^(1/3) =0  ⇔  p=−(1+q^(1/3) )q^(1/3)  ⇔ q=((3p−1±(p−1)(√(1−4p)))/2)  or  p^3 −3pq+q^2 +q=0    with p=(b/a)∧q=(c/a) we get  a=((3b−c)/2)±((b−c)/2)(√(1−((4b)/c)))  ⇔  b=a^(1/3) (a^(1/3) +c^(1/3) )c^(1/3)   ⇔  c=((3b−a)/2)±((b−a)/2)(√(1−((4b)/a)))  or  a^2 c−3abc+ac^2 +b^3 =0
a(x2+bax+ca)=0x2+px+q=0(xα2)(xα)=x2+px+qp=α(α+1)q=α3p+q2/3+q1/3=0p=(1+q1/3)q1/3q=3p1±(p1)14p2orp33pq+q2+q=0withp=baq=cawegeta=3bc2±bc214bcb=a1/3(a1/3+c1/3)c1/3c=3ba2±ba214baora2c3abc+ac2+b3=0
Answered by Rasheed.Sindhi last updated on 16/Feb/21
 { ((α+α^2 =−(b/a))),((α^3 =(c/a))) :}  (α+α^2 )^3 =(−(b/a))^3   α^3 +(α^3 )^2 +3α^3 (α+α^2 )=−(b^3 /a^3 )  (c/a)+((c/a))^2 +3((c/a))(−(b/a))+(b^3 /a^3 )=0  (c/a)+(c^2 /a^2 )−((3bc)/a^2 )+(b^3 /a^3 )=0  a^2 c+ac^2 −3abc+b^3 =0  ac(a+c)+b(b^2 −3ac)=0
{α+α2=baα3=ca(α+α2)3=(ba)3α3+(α3)2+3α3(α+α2)=b3a3ca+(ca)2+3(ca)(ba)+b3a3=0ca+c2a23bca2+b3a3=0a2c+ac23abc+b3=0ac(a+c)+b(b23ac)=0

Leave a Reply

Your email address will not be published. Required fields are marked *