Menu Close

find-the-contracted-form-of-n-p-2-n-p-1-n-p-2-




Question Number 74337 by Maclaurin Stickker last updated on 22/Nov/19
find the contracted form of:   ((n),(p) )+2 (((   n)),((p+1)) )+ (((   n)),((p+2)) )
$${find}\:{the}\:{contracted}\:{form}\:{of}: \\ $$$$\begin{pmatrix}{{n}}\\{{p}}\end{pmatrix}+\mathrm{2}\begin{pmatrix}{\:\:\:{n}}\\{{p}+\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{\:\:\:{n}}\\{{p}+\mathrm{2}}\end{pmatrix} \\ $$
Answered by MJS last updated on 23/Nov/19
 ((n),(p) ) =((n!)/(p!(n−p)!))=((n!(p+1)(p+2))/(p!(n−p)!(p+1)(p+2)))  2 ((n),((p+1)) ) =((2n!)/((p+1)!(n−p−1)!))=((2n!(n−p))/(p!(n−p)!(p+1)))=  =((2n!(n−p)(p+2))/(p!(n−p)!(p+1)(p+2)))   ((n),((p+2)) ) =((n!)/((p+2)!(n−p−2)!))=  =((n!(n−p)(n−p−1))/(p!(n−p)!(p+1)(p+2)))     ((n),(p) ) +2 ((n),((p+1)) ) + ((n),((p+2)) ) =  =((n!((p+1)(p+2)+2(n−p)(p+2)+(n−p)(n−p−1)))/(p!(n−p)!(p+1)(p+2)))=  =((n!(n^2 +3n+2))/(p!(n−p)!(p+1)(p+2)))=  =((n!(n+1)(n+2))/(p!(n−p)!(p+1)(p+2)))=(((n+2)!)/((p+2)!(n−p)!))=  =(((n+2)!)/((p+2)!((n+2)−(p+2))!))= (((n+2)),((p+2)) )
$$\begin{pmatrix}{{n}}\\{{p}}\end{pmatrix}\:=\frac{{n}!}{{p}!\left({n}−{p}\right)!}=\frac{{n}!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)} \\ $$$$\mathrm{2}\begin{pmatrix}{{n}}\\{{p}+\mathrm{1}}\end{pmatrix}\:=\frac{\mathrm{2}{n}!}{\left({p}+\mathrm{1}\right)!\left({n}−{p}−\mathrm{1}\right)!}=\frac{\mathrm{2}{n}!\left({n}−{p}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{2}{n}!\left({n}−{p}\right)\left({p}+\mathrm{2}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)} \\ $$$$\begin{pmatrix}{{n}}\\{{p}+\mathrm{2}}\end{pmatrix}\:=\frac{{n}!}{\left({p}+\mathrm{2}\right)!\left({n}−{p}−\mathrm{2}\right)!}= \\ $$$$=\frac{{n}!\left({n}−{p}\right)\left({n}−{p}−\mathrm{1}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)} \\ $$$$ \\ $$$$\begin{pmatrix}{{n}}\\{{p}}\end{pmatrix}\:+\mathrm{2}\begin{pmatrix}{{n}}\\{{p}+\mathrm{1}}\end{pmatrix}\:+\begin{pmatrix}{{n}}\\{{p}+\mathrm{2}}\end{pmatrix}\:= \\ $$$$=\frac{{n}!\left(\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)+\mathrm{2}\left({n}−{p}\right)\left({p}+\mathrm{2}\right)+\left({n}−{p}\right)\left({n}−{p}−\mathrm{1}\right)\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}= \\ $$$$=\frac{{n}!\left({n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}= \\ $$$$=\frac{{n}!\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{{p}!\left({n}−{p}\right)!\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}=\frac{\left({n}+\mathrm{2}\right)!}{\left({p}+\mathrm{2}\right)!\left({n}−{p}\right)!}= \\ $$$$=\frac{\left({n}+\mathrm{2}\right)!}{\left({p}+\mathrm{2}\right)!\left(\left({n}+\mathrm{2}\right)−\left({p}+\mathrm{2}\right)\right)!}=\begin{pmatrix}{{n}+\mathrm{2}}\\{{p}+\mathrm{2}}\end{pmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *