Menu Close

Find-the-determinant-of-the-matrix-below-determinant-3-1-5-3-4-3-8-5-6-2-1-7-8-5-8-1-




Question Number 9271 by tawakalitu last updated on 27/Nov/16
Find the determinant of the matrix below.   determinant (((3  1  5  3)),((4  3  8  5)),((6  2  1  7)),((8  5  8  1)))
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{below}. \\ $$$$\begin{vmatrix}{\mathrm{3}\:\:\mathrm{1}\:\:\mathrm{5}\:\:\mathrm{3}}\\{\mathrm{4}\:\:\mathrm{3}\:\:\mathrm{8}\:\:\mathrm{5}}\\{\mathrm{6}\:\:\mathrm{2}\:\:\mathrm{1}\:\:\mathrm{7}}\\{\mathrm{8}\:\:\mathrm{5}\:\:\mathrm{8}\:\:\mathrm{1}}\end{vmatrix} \\ $$
Answered by mrW last updated on 27/Nov/16
C4−C1:   determinant ((3,1,5,0),(4,3,8,1),(6,2,1,1),(8,5,8,(−7)))  C1−C2×3 and C3−C2×5:   determinant ((0,1,0,0),((−5),3,(−7),1),(0,2,(−9),1),((−7),5,(−17),(−7)))  =− determinant (((−5),(−7),1),(0,(−9),1),((−7),(−17),(−7)))  =−1×(−5)(9×7+17×1)−1×(−7)(−7×1+9×1)  =5×80+7×2  =414
$$\mathrm{C4}−\mathrm{C1}: \\ $$$$\begin{vmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}&{\mathrm{0}}\\{\mathrm{4}}&{\mathrm{3}}&{\mathrm{8}}&{\mathrm{1}}\\{\mathrm{6}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{8}}&{\mathrm{5}}&{\mathrm{8}}&{−\mathrm{7}}\end{vmatrix} \\ $$$$\mathrm{C1}−\mathrm{C2}×\mathrm{3}\:\mathrm{and}\:\mathrm{C3}−\mathrm{C2}×\mathrm{5}: \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{−\mathrm{5}}&{\mathrm{3}}&{−\mathrm{7}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}&{−\mathrm{9}}&{\mathrm{1}}\\{−\mathrm{7}}&{\mathrm{5}}&{−\mathrm{17}}&{−\mathrm{7}}\end{vmatrix} \\ $$$$=−\begin{vmatrix}{−\mathrm{5}}&{−\mathrm{7}}&{\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{9}}&{\mathrm{1}}\\{−\mathrm{7}}&{−\mathrm{17}}&{−\mathrm{7}}\end{vmatrix} \\ $$$$=−\mathrm{1}×\left(−\mathrm{5}\right)\left(\mathrm{9}×\mathrm{7}+\mathrm{17}×\mathrm{1}\right)−\mathrm{1}×\left(−\mathrm{7}\right)\left(−\mathrm{7}×\mathrm{1}+\mathrm{9}×\mathrm{1}\right) \\ $$$$=\mathrm{5}×\mathrm{80}+\mathrm{7}×\mathrm{2} \\ $$$$=\mathrm{414} \\ $$
Commented by tawakalitu last updated on 27/Nov/16
Thank for your help. i really appreciate sir.
$$\mathrm{Thank}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *