Menu Close

find-the-domain-and-range-of-y-4x-2-3-x-lt-2-3x-1-x-2-




Question Number 5237 by sanusihammed last updated on 02/May/16
find the domain and range of   y = [_( 4x^2 +3               x <2) ^( 3x−1                x ≥ 2)
$${find}\:{the}\:{domain}\:{and}\:{range}\:{of}\: \\ $$$${y}\:=\:\left[_{\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:<\mathrm{2}} ^{\:\mathrm{3}{x}−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:\geqslant\:\mathrm{2}} \right. \\ $$
Answered by FilupSmith last updated on 02/May/16
Domain = {x: −∞≤x≤∞}    Range_1  y=3x−1  {y: [3(2)−1]≤y≤∞}  {y: 5≤y≤∞}    Range_2  y=4x^2 +3  {y: −∞≤y<[4(2)^2 +3]}  {y: −∞≤y<19}    ∴Range = {y: −∞≤y≤∞}
$${Domain}\:=\:\left\{{x}:\:−\infty\leqslant{x}\leqslant\infty\right\} \\ $$$$ \\ $$$${Range}_{\mathrm{1}} \:{y}=\mathrm{3}{x}−\mathrm{1} \\ $$$$\left\{{y}:\:\left[\mathrm{3}\left(\mathrm{2}\right)−\mathrm{1}\right]\leqslant{y}\leqslant\infty\right\} \\ $$$$\left\{{y}:\:\mathrm{5}\leqslant{y}\leqslant\infty\right\} \\ $$$$ \\ $$$${Range}_{\mathrm{2}} \:{y}=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3} \\ $$$$\left\{{y}:\:−\infty\leqslant{y}<\left[\mathrm{4}\left(\mathrm{2}\right)^{\mathrm{2}} +\mathrm{3}\right]\right\} \\ $$$$\left\{{y}:\:−\infty\leqslant{y}<\mathrm{19}\right\} \\ $$$$ \\ $$$$\therefore{Range}\:=\:\left\{{y}:\:−\infty\leqslant{y}\leqslant\infty\right\} \\ $$
Answered by Rasheed Soomro last updated on 02/May/16
y = [_( 4x^2 +3               x <2) ^( 3x−1                x ≥ 2)   The function is defined for all real  numbers. Hence domain of function   is R.  ^• For x≥2            x≥2       ⇒3x≥6       ⇒3x−1≥5       ⇒ y≥5  ^(• ) For x<2            x<2       ⇒x^2 <4       ⇒4x^2 <16       ⇒4x^2 +3<19       ⇒ y<19  So the range is {y ∣ y∈ R ∧  5≤y<19 }
$${y}\:=\:\left[_{\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:<\mathrm{2}} ^{\:\mathrm{3}{x}−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:\geqslant\:\mathrm{2}} \right. \\ $$$$\mathrm{The}\:\mathrm{function}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:\mathrm{all}\:\mathrm{real} \\ $$$$\mathrm{numbers}.\:\mathrm{Hence}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{is}\:\mathbb{R}. \\ $$$$\:^{\bullet} \mathrm{For}\:\mathrm{x}\geqslant\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{x}\geqslant\mathrm{2} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{3x}\geqslant\mathrm{6} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{3x}−\mathrm{1}\geqslant\mathrm{5} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{y}\geqslant\mathrm{5} \\ $$$$\:^{\bullet\:} \mathrm{For}\:\mathrm{x}<\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{x}<\mathrm{2} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{x}^{\mathrm{2}} <\mathrm{4} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{4x}^{\mathrm{2}} <\mathrm{16} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{4x}^{\mathrm{2}} +\mathrm{3}<\mathrm{19} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{y}<\mathrm{19} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{range}\:\mathrm{is}\:\left\{\mathrm{y}\:\mid\:\mathrm{y}\in\:\mathbb{R}\:\wedge\:\:\mathrm{5}\leqslant\mathrm{y}<\mathrm{19}\:\right\} \\ $$
Commented by Yozzii last updated on 02/May/16
y≥3. Do a sketch graph for y to see  this.
$${y}\geqslant\mathrm{3}.\:{Do}\:{a}\:{sketch}\:{graph}\:{for}\:{y}\:{to}\:{see} \\ $$$${this}. \\ $$
Commented by FilupSmith last updated on 02/May/16
Ah i miswrote the final part!
$${Ah}\:{i}\:{miswrote}\:{the}\:{final}\:{part}! \\ $$
Commented by Rasheed Soomro last updated on 06/May/16
From graph I understand now that the range is {y: y∈R,y≥3}  Credit goes to Yozzi.  I think that for determining range of   a function its minima and maxima should  be considered.
$$\mathrm{From}\:\mathrm{graph}\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{that}\:\mathrm{the}\:\mathrm{range}\:\mathrm{is}\:\left\{{y}:\:{y}\in\mathbb{R},{y}\geqslant\mathrm{3}\right\} \\ $$$$\mathrm{Credit}\:\mathrm{goes}\:\mathrm{to}\:\mathrm{Yozzi}. \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{for}\:\mathrm{determining}\:\mathrm{range}\:\mathrm{of}\: \\ $$$$\mathrm{a}\:\mathrm{function}\:\mathrm{its}\:\mathrm{minima}\:\mathrm{and}\:\mathrm{maxima}\:\mathrm{should} \\ $$$$\mathrm{be}\:\mathrm{considered}. \\ $$
Commented by Rasheed Soomro last updated on 05/May/16
Commented by Yozzii last updated on 06/May/16
You also need to then find out whether  those stationary points are global  or local for all real x. If these points  are global then you would have found  one end of the interval for y.
$${You}\:{also}\:{need}\:{to}\:{then}\:{find}\:{out}\:{whether} \\ $$$${those}\:{stationary}\:{points}\:{are}\:{global} \\ $$$${or}\:{local}\:{for}\:{all}\:{real}\:{x}.\:{If}\:{these}\:{points} \\ $$$${are}\:{global}\:{then}\:{you}\:{would}\:{have}\:{found} \\ $$$${one}\:{end}\:{of}\:{the}\:{interval}\:{for}\:{y}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *