Menu Close

find-the-equation-of-circle-whose-parametric-form-is-given-by-x-3cos-5-and-y-3sin-7-and-second-part-is-x-4cos-3-and-y-4sin-4-find-centre-and-radius-of-above-circle-guys-plz-ans-me-soon




Question Number 1012 by rpatle69@gmail.com last updated on 13/May/15
find the equation of circle whose  parametric form is given by   x=3cos θ+5 and y= 3sin θ−7 and  second part is x=4cos θ−3 and  y=4sin θ+4. find centre and   radius of above circle.      guys plz ans. me soon.....
$${find}\:{the}\:{equation}\:{of}\:{circle}\:{whose} \\ $$$${parametric}\:{form}\:{is}\:{given}\:{by}\: \\ $$$${x}=\mathrm{3cos}\:\theta+\mathrm{5}\:{and}\:{y}=\:\mathrm{3sin}\:\theta−\mathrm{7}\:{and} \\ $$$${second}\:{part}\:{is}\:{x}=\mathrm{4cos}\:\theta−\mathrm{3}\:{and} \\ $$$${y}=\mathrm{4sin}\:\theta+\mathrm{4}.\:{find}\:{centre}\:{and}\: \\ $$$${radius}\:{of}\:{above}\:{circle}. \\ $$$$ \\ $$$$ \\ $$$${guys}\:{plz}\:{ans}.\:{me}\:{soon}….. \\ $$$$ \\ $$
Answered by sudhanshur last updated on 13/May/15
x−5=3cos θ  y+7=3sin θ  square and add  (x−5)^2 +(y+7)^2 =9
$${x}−\mathrm{5}=\mathrm{3cos}\:\theta \\ $$$${y}+\mathrm{7}=\mathrm{3sin}\:\theta \\ $$$${square}\:{and}\:{add} \\ $$$$\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}+\mathrm{7}\right)^{\mathrm{2}} =\mathrm{9} \\ $$
Answered by sudhanshur last updated on 13/May/15
x+3=4cos θ  y−4=4sin θ  (x+3)^2 +(y−4)^2 =16
$${x}+\mathrm{3}=\mathrm{4cos}\:\theta \\ $$$${y}−\mathrm{4}=\mathrm{4sin}\:\theta \\ $$$$\left({x}+\mathrm{3}\right)^{\mathrm{2}} +\left({y}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{16} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *