Menu Close

Find-the-equation-of-ellipse-with-F-1-1-2-F-2-3-4-and-2a-2-3-




Question Number 136165 by bramlexs22 last updated on 19/Mar/21
Find the equation of ellipse with  F_1 (1,2) , F_2 (3,4) and 2a = 2(√3)
FindtheequationofellipsewithF1(1,2),F2(3,4)and2a=23
Commented by bramlexs22 last updated on 19/Mar/21
Dear Mr W can you help me
DearMrWcanyouhelpme
Commented by mr W last updated on 19/Mar/21
do you mean the foci with F_1  and F_2 ?
doyoumeanthefociwithF1andF2?
Commented by bramlexs22 last updated on 19/Mar/21
yes sir
yessir
Answered by mr W last updated on 19/Mar/21
per definition the sum of distances  from any point on an ellipse to the  foci is constant which is 2a.  (√((x−1)^2 +(y−2)^2 ))+(√((x−3)^2 +(y−4)^2 ))=2(√3)  (√((x−1)^2 +(y−2)^2 ))=2(√3)−(√((x−3)^2 +(y−4)^2 ))  (x−1)^2 +(y−2)^2 =12+(x−3)^2 +(y−4)^2 −4(√3)(√((x−3)^2 +(y−4)^2 ))  x+y−8=(√3)(√((x−3)^2 +(y−4)^2 ))  x^2 +y^2 +64+2xy−16x−16y=3(x^2 −6x+9)+3(y^2 −8y+16)  ⇒2x^2 +2y^2 −2xy−2x−8y+11=0
perdefinitionthesumofdistancesfromanypointonanellipsetothefociisconstantwhichis2a.(x1)2+(y2)2+(x3)2+(y4)2=23(x1)2+(y2)2=23(x3)2+(y4)2(x1)2+(y2)2=12+(x3)2+(y4)243(x3)2+(y4)2x+y8=3(x3)2+(y4)2x2+y2+64+2xy16x16y=3(x26x+9)+3(y28y+16)2x2+2y22xy2x8y+11=0
Commented by bramlexs22 last updated on 19/Mar/21
i try by rotation with angle  45° . i′m stuck. forgot by definition. thanks sir
itrybyrotationwithangle45°.imstuck.forgotbydefinition.thankssir
Commented by mr W last updated on 19/Mar/21
Commented by mr W last updated on 19/Mar/21
in this case you can also easily get  the equation through rotation,  because the rotation angle is 45°.
inthiscaseyoucanalsoeasilygettheequationthroughrotation,becausetherotationangleis45°.
Commented by bramlexs22 last updated on 19/Mar/21
yes sir but i′m stuck. i don′t  which my mistake
yessirbutimstuck.idontwhichmymistake
Commented by bramlexs22 last updated on 19/Mar/21
can sir show me my mistake
can sir show me my mistake
Commented by bramlexs22 last updated on 19/Mar/21
 ((x),(y) ) = (((cos 45°   −sin 45°)),((sin 45°        cos 45°)) )^(−1)   (((x′)),((y′)) )
(xy)=(cos45°sin45°sin45°cos45°)1(xy)
Commented by mr W last updated on 19/Mar/21
Method using rotation  F_1 F_2 =(√((3−1)^2 +(4−2)^2 ))=2(√2)  midpoint from F_1  and F_2  is (2,3)  a=(√3) (given)  b=(√(a^2 −(((F_1 F_2 )/2))^2 ))=(√(3−2))=1  eqn. before rotation:  (((x−2)^2 )/3)+(y−3)^2 =1  rotation by 45° ↶ about point (2,3)  x_1 =(x−2)((√2)/2)+(y−3)((√2)/2)+2=(x+y−5)((√2)/2)+2  y_1 =−(x−2)((√2)/2)+(y−3)((√2)/2)+3=(−x+y−1)((√2)/2)+3  eqn. after rotation:  (((x+y−5)^2 )/6)+(((−x+y−1)^2 )/2)=1  or  (x+y−5)^2 +3(−x+y−1)^2 =6  x^2 +y^2 +25+2xy−10x−10y+3(x^2 +y^2 +1−2xy+2x−2y)=6  ⇒2x^2 +2y^2 −2xy−2x−8y+11=0
\boldsymbolMethod\boldsymbolusing\boldsymbolrotationF1F2=(31)2+(42)2=22midpointfromF1andF2is(2,3)a=3(given)b=a2(F1F22)2=32=1eqn.beforerotation:(x2)23+(y3)2=1rotationby45°aboutpoint(2,3)x1=(x2)22+(y3)22+2=(x+y5)22+2y1=(x2)22+(y3)22+3=(x+y1)22+3eqn.afterrotation:(x+y5)26+(x+y1)22=1or(x+y5)2+3(x+y1)2=6x2+y2+25+2xy10x10y+3(x2+y2+12xy+2x2y)=62x2+2y22xy2x8y+11=0
Commented by mr W last updated on 19/Mar/21
Commented by bramlexs22 last updated on 19/Mar/21
oo my mistake use rotatiton   about point (0,0) sir. great sir
oomymistakeuserotatitonaboutpoint(0,0)sir.greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *