Menu Close

Find-the-equation-of-the-circle-through-the-points-of-intersection-of-x-2-y-2-1-0-x-2-y-2-2x-4y-1-0-and-touching-the-line-x-2y-0-




Question Number 135000 by bobhans last updated on 09/Mar/21
  Find the equation of the circle through the points of intersection of x^2+y^2−1=0,x^2+y^2−2x−4y+1=0 and touching the line x+2y=0?
$$ \\ $$Find the equation of the circle through the points of intersection of x^2+y^2−1=0,x^2+y^2−2x−4y+1=0 and touching the line x+2y=0?
Answered by EDWIN88 last updated on 09/Mar/21
Let C is equation of circle , so   C≡ x^2 +y^2 −1+λ(−2x−4y+2)=0  ≡ x^2 +y^2 −2λx−4λy+2λ−1 = 0  witb center point at (λ,2λ) and radius   r = (√(λ^2 +4λ^2 +1−2λ)) = ((∣λ+4λ∣)/( (√5)))  ⇒(√(5(5λ^2 +1−2λ))) = ∣5λ∣  ⇒25λ^2 +5−10λ = 25λ^2  ; λ=(1/2)  so we get solution ≡ x^2 +y^2 −x−2y = 0
$$\mathrm{Let}\:\mathrm{C}\:\mathrm{is}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{circle}\:,\:\mathrm{so}\: \\ $$$$\mathrm{C}\equiv\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{1}+\lambda\left(−\mathrm{2x}−\mathrm{4y}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\equiv\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2}\lambda\mathrm{x}−\mathrm{4}\lambda\mathrm{y}+\mathrm{2}\lambda−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{witb}\:\mathrm{center}\:\mathrm{point}\:\mathrm{at}\:\left(\lambda,\mathrm{2}\lambda\right)\:\mathrm{and}\:\mathrm{radius}\: \\ $$$$\mathrm{r}\:=\:\sqrt{\lambda^{\mathrm{2}} +\mathrm{4}\lambda^{\mathrm{2}} +\mathrm{1}−\mathrm{2}\lambda}\:=\:\frac{\mid\lambda+\mathrm{4}\lambda\mid}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow\sqrt{\mathrm{5}\left(\mathrm{5}\lambda^{\mathrm{2}} +\mathrm{1}−\mathrm{2}\lambda\right)}\:=\:\mid\mathrm{5}\lambda\mid \\ $$$$\Rightarrow\mathrm{25}\lambda^{\mathrm{2}} +\mathrm{5}−\mathrm{10}\lambda\:=\:\mathrm{25}\lambda^{\mathrm{2}} \:;\:\lambda=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:\mathrm{solution}\:\equiv\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{x}−\mathrm{2y}\:=\:\mathrm{0} \\ $$
Commented by bobhans last updated on 09/Mar/21

Leave a Reply

Your email address will not be published. Required fields are marked *