Menu Close

Find-the-equation-of-the-circle-which-is-orthogonal-to-the-circles-x-2-y-2-7x-y-0-and-x-2-y-2-3x-6y-5-0-and-which-passes-through-the-point-3-0-




Question Number 142208 by ZiYangLee last updated on 27/May/21
Find the equation of the circle which is  orthogonal to the circles x^2 +y^2 −7x−y=0  and x^2 +y^2 +3x−6y+5=0 and which passes  through the point (−3,0).
Findtheequationofthecirclewhichisorthogonaltothecirclesx2+y27xy=0andx2+y2+3x6y+5=0andwhichpassesthroughthepoint(3,0).
Answered by mr W last updated on 27/May/21
x^2 +y^2 −7x−y=0  ⇒(x−(7/2))^2 +(y−(1/2))^2 =((5/( (√2))))^2   ⇒center ((7/2),(1/2)), radius (5/( (√2)))  x^2 +y^2 +3x−6y+5=0  (x+(3/2))^2 +(y−3)^2 =((5/2))^2   ⇒center (−(3/2),3), radius (5/2)  say the equation of the third circle is  (x−a)^2 +(y−b)^2 =r^2     ((7/2)−a)^2 +((1/2)−b)^2 =(r+(5/( (√2))))^2    ...(i)  (−(3/2)−a)^2 +(3−b)^2 =(r+(5/2))^2    ...(ii)  (−3−a)^2 +(0−b)^2 =r^2    ...(iii)  (i)−(iii):  ((1/2)−2a)(((13)/2))+((1/2)−2b)((1/2))=(5/( (√2)))(2r+(5/( (√2))))  26a+2b=−10(√2)r−18   ...(I)  (ii)−(iii):  (−(9/2)−2a)((3/2))+(3−2b)(3)=(5/2)(2r+(5/2))  3a+6b=−5r−4   ...(II)  ⇒a=−(((6(√2)−1)r)/(15))−(2/3)  ⇒b=(((3(√2)−13)r)/(15))−(1/3)  put into (iii):  ((((6(√2)−1)r)/(15))−(7/3))^2 +((((3(√2)−13)r)/(15))−(1/3))^2 =r^2   (18(√2)−7)r^2 +(90(√2)−40)r−250=0  r=((−45(√2)+20±30(√(3+3(√2))))/(18(√2)−7))  (negative value for the big one)
x2+y27xy=0(x72)2+(y12)2=(52)2center(72,12),radius52x2+y2+3x6y+5=0(x+32)2+(y3)2=(52)2center(32,3),radius52saytheequationofthethirdcircleis(xa)2+(yb)2=r2(72a)2+(12b)2=(r+52)2(i)(32a)2+(3b)2=(r+52)2(ii)(3a)2+(0b)2=r2(iii)(i)(iii):(122a)(132)+(122b)(12)=52(2r+52)26a+2b=102r18(I)(ii)(iii):(922a)(32)+(32b)(3)=52(2r+52)3a+6b=5r4(II)a=(621)r1523b=(3213)r1513putinto(iii):((621)r1573)2+((3213)r1513)2=r2(1827)r2+(90240)r250=0r=452+20±303+321827(negativevalueforthebigone)
Commented by mr W last updated on 27/May/21
Commented by mr W last updated on 27/May/21

Leave a Reply

Your email address will not be published. Required fields are marked *