Menu Close

find-the-equation-of-the-circle-whose-center-is-the-origin-and-touches-the-line-3x-4y-15-0-




Question Number 69460 by mhmd last updated on 23/Sep/19
find the equation of the circle whose center is the origin and touches the line 3x−4y−15=0
$${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{whose}\:{center}\:{is}\:{the}\:{origin}\:{and}\:{touches}\:{the}\:{line}\:\mathrm{3}{x}−\mathrm{4}{y}−\mathrm{15}=\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 23/Sep/19
equation of circle is  x^2  +y^2  =r^2   and r =d(0,D)  D : 3x−4y −15 =0 ⇒d(0,D) =((∣3×0−4×0−15∣)/( (√(3^2 +(−4)^2 )))) =((15)/5) =3 =r ⇒  C:  x^2   +y^2  =9
$${equation}\:{of}\:{circle}\:{is}\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:={r}^{\mathrm{2}} \:\:{and}\:{r}\:={d}\left(\mathrm{0},{D}\right) \\ $$$${D}\::\:\mathrm{3}{x}−\mathrm{4}{y}\:−\mathrm{15}\:=\mathrm{0}\:\Rightarrow{d}\left(\mathrm{0},{D}\right)\:=\frac{\mid\mathrm{3}×\mathrm{0}−\mathrm{4}×\mathrm{0}−\mathrm{15}\mid}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{4}\right)^{\mathrm{2}} }}\:=\frac{\mathrm{15}}{\mathrm{5}}\:=\mathrm{3}\:={r}\:\Rightarrow \\ $$$${C}:\:\:{x}^{\mathrm{2}} \:\:+{y}^{\mathrm{2}} \:=\mathrm{9} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *