Menu Close

Find-the-equation-of-the-perpendicular-bisector-of-the-line-joining-the-points-5-4-to-the-point-9-3-




Question Number 8243 by lepan last updated on 04/Oct/16
Find the equation of the perpendicular bisector of the line joining the points (−5,4) to the point (9,−3)
Findtheequationoftheperpendicularbisectorofthelinejoiningthepoints(5,4)tothepoint(9,3)
Answered by sandy_suhendra last updated on 04/Oct/16
let A(−5,4) and B(9,−3)  P is midpoint of AB so P(((−5+9)/2) , ((4−3)/2) )=P(2,(1/2))  the gradient of AB = m_(AB) = ((y_A −y_B )/(x_A −x_B )) = ((4+3)/(−5−9)) = − (1/2)  the gradient of the perpendicular bisector = m_1   so    m_(AB)  × m_1  = −1           − (1/2) × m_1  = − 1                           m_1  = 2  the equation of the perpendicular bisector :                  y − y_P  = m_1 (x − x_P  )                 y − 2    = 2 (x − (1/2) )                          y = 2x + 1
letA(5,4)andB(9,3)PismidpointofABsoP(5+92,432)=P(2,12)thegradientofAB=mAB=yAyBxAxB=4+359=12thegradientoftheperpendicularbisector=m1somAB×m1=112×m1=1m1=2theequationoftheperpendicularbisector:yyP=m1(xxP)y2=2(x12)y=2x+1

Leave a Reply

Your email address will not be published. Required fields are marked *