Menu Close

Find-the-equation-of-the-straight-line-through-2-3-i-parallel-to-ii-perpendicular-to-2x-3y-6-0-




Question Number 10391 by 314159 last updated on 06/Feb/17
Find the equation of the straight  line through (2,3)   (i)parallel to  (ii)perpendicular to 2x−3y+6=0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{through}\:\left(\mathrm{2},\mathrm{3}\right)\: \\ $$$$\left(\mathrm{i}\right)\mathrm{parallel}\:\mathrm{to} \\ $$$$\left(\mathrm{ii}\right)\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{2x}−\mathrm{3y}+\mathrm{6}=\mathrm{0} \\ $$
Answered by mrW1 last updated on 06/Feb/17
2x−3y+6=0  ⇒y=(2/3)x+2    (i)  y−3=(2/3)(x−2)  2x−3y+5=0    (ii)  y−3=−(3/2)(x−2)  3x+2y−12=0
$$\mathrm{2x}−\mathrm{3y}+\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{y}=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}+\mathrm{2} \\ $$$$ \\ $$$$\left(\mathrm{i}\right) \\ $$$$\mathrm{y}−\mathrm{3}=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{x}−\mathrm{2}\right) \\ $$$$\mathrm{2x}−\mathrm{3y}+\mathrm{5}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{ii}\right) \\ $$$$\mathrm{y}−\mathrm{3}=−\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{x}−\mathrm{2}\right) \\ $$$$\mathrm{3x}+\mathrm{2y}−\mathrm{12}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *