Question Number 77990 by peter frank last updated on 12/Jan/20
$${Find}\:{the}\:{equation}\:{to}\:{the} \\ $$$${two}\:{circles}\:{each}\:{of} \\ $$$${which}\:{touch}\:{the}\:{three}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0} \\ $$$$ \\ $$
Answered by john santu last updated on 18/Jan/20
$$\left(\mathrm{1}\right){x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{2}{a}\right)^{\mathrm{2}} \:,\:{C}_{\mathrm{1}} \left(\mathrm{0},\mathrm{0}\right)\:,{r}_{\mathrm{1}} =\mathrm{2}{a} \\ $$$$\left(\mathrm{2}\right)\left({x}+{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \:,{C}_{\mathrm{2}} \left(−{a},\mathrm{0}\right)\:,{r}_{\mathrm{2}} ={a} \\ $$$$\left(\mathrm{3}\right)\:{x}^{\mathrm{2}} +\left({y}−{a}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \:,\:{C}_{\mathrm{3}} \left(\mathrm{0},{a}\right)\:,{r}_{\mathrm{3}} ={a} \\ $$$${The}\:{circle}\:{equation}\:{that}\:{will}\: \\ $$$${look}\:{for}\:{is}\:{centered}\:{at}\:{point} \\ $$$$\left({p},{q}\right)\:{with}\:{radius}\:{r}_{\mathrm{4}} \\ $$$$\Rightarrow{r}_{\mathrm{4}} =\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:}\:,\:{r}_{\mathrm{4}} =\:\sqrt{\left({p}+{a}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} \:},\:{r}_{\mathrm{4}} =\sqrt{{p}^{\mathrm{2}} +\left({q}−{a}\right)^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by john santu last updated on 18/Jan/20
$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} ={p}^{\mathrm{2}} +\mathrm{2}{ap}+{a}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${p}\:=\:−\frac{{a}}{\mathrm{2}}. \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{aq}+{a}^{\mathrm{2}} \\ $$$${q}\:=\:\frac{{a}}{\mathrm{2}}\:.\:{now}\:{we}\:{calculate}\: \\ $$$${r}_{\mathrm{4}} \:=\:\sqrt{\frac{\mathrm{1}}{\mathrm{4}}{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{a}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}{a}\sqrt{\mathrm{2}}. \\ $$$${finally}\:\therefore\:\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$
Commented by mr W last updated on 18/Jan/20
$${sir}: \\ $$$${but}\:\left({red}\right)\:{circle}\:\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${doesn}'{t}\:{touch}\:{the}\:{three}\:{given}\:{circles}! \\ $$
Commented by mr W last updated on 18/Jan/20
Commented by john santu last updated on 19/Jan/20
$${sorry}\:{mister},\:{that}\:{instead}\:{i}\:{circle} \\ $$$${through}\:{the}\:{center}\:{of}\:{three}\:{circles}\: \\ $$$${given}. \\ $$
Answered by mr W last updated on 18/Jan/20
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{2}{a}\right)^{\mathrm{2}} \:\Rightarrow{circle}\:\left(\mathrm{0},\mathrm{0}\right),\:{radius}\:\mathrm{2}{a} \\ $$$$\left({x}+{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \Rightarrow{circle}\:\left(−{a},\mathrm{0}\right),\:{radius}\:{a} \\ $$$$\left({x}−{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \Rightarrow{circle}\:\left({a},\mathrm{0}\right),\:{radius}\:{a} \\ $$$${fourth}\:{circle}\:\left(\mathrm{0},{c}\right),{radius}\:{r} \\ $$$${c}+{r}=\mathrm{2}{a} \\ $$$${c}^{\mathrm{2}} +{a}^{\mathrm{2}} =\left({a}+{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ar}+{r}^{\mathrm{2}} +{a}^{\mathrm{2}} ={a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} =\mathrm{6}{ar} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{a}}{\mathrm{3}} \\ $$$$\Rightarrow{c}=\mathrm{2}{a}−\frac{\mathrm{2}{a}}{\mathrm{3}}=\frac{\mathrm{4}{a}}{\mathrm{3}} \\ $$$${eqn}.\:{of}\:{fourth}\:{circle}\:\left({two}\:{possibilties}\right): \\ $$$${x}^{\mathrm{2}} +\left({y}\pm\frac{\mathrm{4}{a}}{\mathrm{3}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$
Commented by mr W last updated on 18/Jan/20
Commented by peter frank last updated on 18/Jan/20
$${where}\:{c}+{r}=\mathrm{2}{a}\:?\:{come}\:{from}\:{sir} \\ $$
Commented by mr W last updated on 18/Jan/20
Commented by mr W last updated on 18/Jan/20
$${OC}+{CB}={OB} \\ $$$$\Rightarrow{c}+{r}=\mathrm{2}{a} \\ $$$${OC}^{\mathrm{2}} +{OA}^{\mathrm{2}} ={AC}^{\mathrm{2}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} +{a}^{\mathrm{2}} =\left({a}+{r}\right)^{\mathrm{2}} \\ $$
Commented by john santu last updated on 19/Jan/20
$${good}\:{sir} \\ $$