Menu Close

Find-the-equation-to-the-two-circles-each-of-which-touch-the-three-circle-x-2-y-2-4a-2-x-2-y-2-2ax-0-x-2-y-2-2ax-0-




Question Number 77990 by peter frank last updated on 12/Jan/20
Find the equation to the  two circles each of  which touch the three circle  x^2 +y^2 =4a^2   x^2 +y^2 +2ax=0  x^2 +y^2 −2ax=0
Findtheequationtothetwocircleseachofwhichtouchthethreecirclex2+y2=4a2x2+y2+2ax=0x2+y22ax=0
Answered by john santu last updated on 18/Jan/20
(1)x^2 +y^2 =(2a)^2  , C_1 (0,0) ,r_1 =2a  (2)(x+a)^2 +y^2 =a^2  ,C_2 (−a,0) ,r_2 =a  (3) x^2 +(y−a)^2 =a^2  , C_3 (0,a) ,r_3 =a  The circle equation that will   look for is centered at point  (p,q) with radius r_4   ⇒r_4 =(√(p^2 +q^2  )) , r_4 = (√((p+a)^2 +q^2  )), r_4 =(√(p^2 +(q−a)^2 ))
(1)x2+y2=(2a)2,C1(0,0),r1=2a(2)(x+a)2+y2=a2,C2(a,0),r2=a(3)x2+(ya)2=a2,C3(0,a),r3=aThecircleequationthatwilllookforiscenteredatpoint(p,q)withradiusr4r4=p2+q2,r4=(p+a)2+q2,r4=p2+(qa)2
Commented by john santu last updated on 18/Jan/20
⇒p^2 +q^2 =p^2 +2ap+a^2 +q^2   p = −(a/2).  ⇒p^2 +q^2 =p^2 +q^2 −2aq+a^2   q = (a/2) . now we calculate   r_4  = (√((1/4)a^2 +(1/4)a^2 )) = (1/2)a(√2).  finally ∴ (x+(a/2))^2 +(y−(a/2))^2 =(a^2 /2)
p2+q2=p2+2ap+a2+q2p=a2.p2+q2=p2+q22aq+a2q=a2.nowwecalculater4=14a2+14a2=12a2.finally(x+a2)2+(ya2)2=a22
Commented by mr W last updated on 18/Jan/20
sir:  but (red) circle (x+(a/2))^2 +(y−(a/2))^2 =(a^2 /2)  doesn′t touch the three given circles!
sir:but(red)circle(x+a2)2+(ya2)2=a22doesnttouchthethreegivencircles!
Commented by mr W last updated on 18/Jan/20
Commented by john santu last updated on 19/Jan/20
sorry mister, that instead i circle  through the center of three circles   given.
sorrymister,thatinsteadicirclethroughthecenterofthreecirclesgiven.
Answered by mr W last updated on 18/Jan/20
x^2 +y^2 =(2a)^2  ⇒circle (0,0), radius 2a  (x+a)^2 +y^2 =a^2 ⇒circle (−a,0), radius a  (x−a)^2 +y^2 =a^2 ⇒circle (a,0), radius a  fourth circle (0,c),radius r  c+r=2a  c^2 +a^2 =(a+r)^2   4a^2 −4ar+r^2 +a^2 =a^2 +r^2 +2ar  4a^2 =6ar  ⇒r=((2a)/3)  ⇒c=2a−((2a)/3)=((4a)/3)  eqn. of fourth circle (two possibilties):  x^2 +(y±((4a)/3))^2 =(((2a)/3))^2
x2+y2=(2a)2circle(0,0),radius2a(x+a)2+y2=a2circle(a,0),radiusa(xa)2+y2=a2circle(a,0),radiusafourthcircle(0,c),radiusrc+r=2ac2+a2=(a+r)24a24ar+r2+a2=a2+r2+2ar4a2=6arr=2a3c=2a2a3=4a3eqn.offourthcircle(twopossibilties):x2+(y±4a3)2=(2a3)2
Commented by mr W last updated on 18/Jan/20
Commented by peter frank last updated on 18/Jan/20
where c+r=2a ? come from sir
wherec+r=2a?comefromsir
Commented by mr W last updated on 18/Jan/20
Commented by mr W last updated on 18/Jan/20
OC+CB=OB  ⇒c+r=2a  OC^2 +OA^2 =AC^2   ⇒c^2 +a^2 =(a+r)^2
OC+CB=OBc+r=2aOC2+OA2=AC2c2+a2=(a+r)2
Commented by john santu last updated on 19/Jan/20
good sir
goodsir

Leave a Reply

Your email address will not be published. Required fields are marked *