Question Number 1624 by 112358 last updated on 27/Aug/15

Commented by Rasheed Soomro last updated on 27/Aug/15
![Let (√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))=t x+(√(x+(√(x+(√(x+(√(x+...))))))))=t^2 x+t=t^2 t^2 −t−x=0 t=((−(−1)±(√((−1)^2 −4(1)(−x))))/(2(1))) t=((1±(√(1+4x)))/2) y′(x)=(d/dx)(((1±(√(1+4x)))/2)) f ′(a)=lim_(x→a) ((f(x)−f(a))/(x−a)) [First principle /ab−initio Formula] y′(a)=lim_(x→a) (((((1±(√(1+4x)))/2))−(((1±(√(1+4a)))/2)))/(x−a)) =lim_(x→a) ((±(√(1+4x)) ∓ (√(1+4a)))/(2(x−a))) y′(a)=lim_(x→a) (((√(1+4x)) −(√(1+4a)))/(2(x−a))) ∨ y′(a)= lim_(x→a) ((−(√(1+4x)) +(√(1+4a)))/(2(x−a))) =lim_(x→a) ((((√(1+4x)) −(√(1+4a)))/(2(x−a)))×(((√(1+4x)) +(√(1+4a)))/( (√(1+4x)) +(√(1+4a))))) =lim_(x→a) ((1+4x−1−4a)/(2(x−a)((√(1+4x)) +(√(1+4a))))) =lim_(x→a) ((4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a))))) =lim_(x→a) (4/(2((√(1+4x)) +(√(1+4a))))) = (2/( (√(1+4a)) + (√(1+4a))))=(1/( (√(1+4a)))) y′(a)=(1/( (√(1+4a)))) ⇒y′(x)=(1/( (√(1+4x)))) y′(a)= lim_(x→a) (((−(√(1+4x)) +(√(1+4a)))/(2(x−a))) ×((+(√(1+4x)) +(√(1+4a)))/(+(√(1+4x)) +(√(1+4a)))) ) =lim_(x→a) (((1+4a−1−4x)/(2(x−a)((√(1+4x)) +(√(1+4a)))))) =lim_(x→a) (((−4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a)))))) =lim_(x→a) (((−2)/(((√(1+4x)) +(√(1+4a))))))= ((−2)/(((√(1+4a)) +(√(1+4a))))) y′(a) =((−1)/( (√(1+4a)))) ⇒y′(x)=((−1)/( (√(1+4x)))) y′(x)=((±1)/( (√(1+4x))))](https://www.tinkutara.com/question/Q1627.png)
Commented by 112358 last updated on 27/Aug/15

Commented by Rasheed Soomro last updated on 28/Aug/15

Commented by Yozzian last updated on 27/Aug/15

Commented by Rasheed Soomro last updated on 28/Aug/15

Answered by Yozzian last updated on 27/Aug/15
