Menu Close

Find-the-first-derivative-of-y-x-x-x-x-x-x-from-first-principles-




Question Number 1624 by 112358 last updated on 27/Aug/15
Find the first derivative of  y(x)=(√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))  from first principles.
Findthefirstderivativeofy(x)=x+x+x+x+x+fromfirstprinciples.
Commented by Rasheed Soomro last updated on 27/Aug/15
Let    (√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))=t                 x+(√(x+(√(x+(√(x+(√(x+...))))))))=t^2                  x+t=t^2                  t^2 −t−x=0            t=((−(−1)±(√((−1)^2 −4(1)(−x))))/(2(1)))         t=((1±(√(1+4x)))/2)    y′(x)=(d/dx)(((1±(√(1+4x)))/2))       f ′(a)=lim_(x→a) ((f(x)−f(a))/(x−a))    [First principle /ab−initio Formula]                y′(a)=lim_(x→a) (((((1±(√(1+4x)))/2))−(((1±(√(1+4a)))/2)))/(x−a))                          =lim_(x→a) ((±(√(1+4x))   ∓  (√(1+4a)))/(2(x−a)))        y′(a)=lim_(x→a) (((√(1+4x)) −(√(1+4a)))/(2(x−a))) ∨ y′(a)= lim_(x→a) ((−(√(1+4x)) +(√(1+4a)))/(2(x−a)))               =lim_(x→a) ((((√(1+4x)) −(√(1+4a)))/(2(x−a)))×(((√(1+4x)) +(√(1+4a)))/( (√(1+4x)) +(√(1+4a)))))                =lim_(x→a)   ((1+4x−1−4a)/(2(x−a)((√(1+4x)) +(√(1+4a)))))                 =lim_(x→a)   ((4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a)))))                 =lim_(x→a)   (4/(2((√(1+4x)) +(√(1+4a)))))                 = (2/( (√(1+4a)) + (√(1+4a))))=(1/( (√(1+4a))))           y′(a)=(1/( (√(1+4a)))) ⇒y′(x)=(1/( (√(1+4x))))        y′(a)= lim_(x→a)  (((−(√(1+4x)) +(√(1+4a)))/(2(x−a))) ×((+(√(1+4x)) +(√(1+4a)))/(+(√(1+4x)) +(√(1+4a)))) )             =lim_(x→a) (((1+4a−1−4x)/(2(x−a)((√(1+4x)) +(√(1+4a))))))             =lim_(x→a) (((−4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a))))))             =lim_(x→a) (((−2)/(((√(1+4x)) +(√(1+4a))))))= ((−2)/(((√(1+4a)) +(√(1+4a)))))            y′(a) =((−1)/( (√(1+4a)))) ⇒y′(x)=((−1)/( (√(1+4x))))              y′(x)=((±1)/( (√(1+4x))))
Letx+x+x+x+x+=tx+x+x+x+x+=t2x+t=t2t2tx=0t=(1)±(1)24(1)(x)2(1)t=1±1+4x2y(x)=ddx(1±1+4x2)f(a)=limxaf(x)f(a)xa[Firstprinciple/abinitioFormula]y(a)=limxa(1±1+4x2)(1±1+4a2)xa=limxa±1+4x1+4a2(xa)y(a)=limxa1+4x1+4a2(xa)y(a)=limxa1+4x+1+4a2(xa)=limxa(1+4x1+4a2(xa)×1+4x+1+4a1+4x+1+4a)=limxa1+4x14a2(xa)(1+4x+1+4a)=limxa4(xa)2(xa)(1+4x+1+4a)=limxa42(1+4x+1+4a)=21+4a+1+4a=11+4ay(a)=11+4ay(x)=11+4xy(a)=limxa(1+4x+1+4a2(xa)×+1+4x+1+4a+1+4x+1+4a)=limxa(1+4a14x2(xa)(1+4x+1+4a))=limxa(4(xa)2(xa)(1+4x+1+4a))=limxa(2(1+4x+1+4a))=2(1+4a+1+4a)y(a)=11+4ay(x)=11+4xy(x)=±11+4x
Commented by 112358 last updated on 27/Aug/15
If −x is constant with t variable  shouldn′t it be          t=((1±(√(1+4x)))/2) ?
Ifxisconstantwithtvariableshouldntitbet=1±1+4x2?
Commented by Rasheed Soomro last updated on 28/Aug/15
Yes, it is a calculation mistake! And I am going to correct it.  Thanks for mentioning.
Yes,itisacalculationmistake!AndIamgoingtocorrectit.Thanksformentioning.
Commented by Yozzian last updated on 27/Aug/15
Looks correct sir! My approach  took the form       (dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h)
Lookscorrectsir!Myapproachtooktheformdydx=limh0f(x+h)f(x)h
Commented by Rasheed Soomro last updated on 28/Aug/15
Thanks!
Thanks!
Answered by Yozzian last updated on 27/Aug/15
The answer is in the comments  following the question.
Theanswerisinthecommentsfollowingthequestion.

Leave a Reply

Your email address will not be published. Required fields are marked *