Menu Close

Find-the-first-four-terms-of-the-power-series-expansion-of-sinx-1-x-




Question Number 7887 by tawakalitu last updated on 23/Sep/16
Find the first four terms of the power series   expansion of     ((sinx)/(1 − x))
Findthefirstfourtermsofthepowerseriesexpansionofsinx1x
Answered by sandy_suhendra last updated on 23/Sep/16
from the power series :  sin x = Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))              = x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))  (the first four term)  (1/(1−x)) = Σ_(n=0) ^∞  x^n              = 1+x+x^2 +x^3  (the first four term)  so     ((sin x)/(1−x)) = 1(x)+x(−(x^3 /(3!)))+x^2 ((x^5 /(5!)))+x^3 (−(x^7 /(7!)))                         = x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))
fromthepowerseries:sinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!(thefirstfourterm)11x=n=0xn=1+x+x2+x3(thefirstfourterm)sosinx1x=1(x)+x(x33!)+x2(x55!)+x3(x77!)=xx43!+x75!x107!
Commented by tawakalitu last updated on 23/Sep/16
Thank you so much.
Thankyousomuch.
Commented by Rasheed Soomro last updated on 24/Sep/16
(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!)))(1+x+x^2 +x^3 )=x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))???
(xx33!+x55!x77!)(1+x+x2+x3)=xx43!+x75!x107!???
Commented by prakash jain last updated on 24/Sep/16
(x−(x^3 /6)+...)(1+x+x^2 +x^3 +..)  =x+x^2 +x^3 +x^4 −(x^3 /6)−(x^4 /6) +(higher order)  =x+x^2 −((5x^3 )/6)−((5x^4 )/6)
(xx36+)(1+x+x2+x3+..)=x+x2+x3+x4x36x46+(higherorder)=x+x25x365x46
Commented by sandy_suhendra last updated on 28/Sep/16
I thought  ((sin x)/(1−x)) = sinx((1/(1−x)))  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!)) [Σ_(n=0) ^∞  x^n ]  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))  x^n   but I′m wrong, thank′s for your correction
Ithoughtsinx1x=sinx(11x)=n=0(1)nx2n+1(2n+1)![n=0xn]=n=0(1)nx2n+1(2n+1)!xnbutImwrong,thanksforyourcorrection
Commented by sandy_suhendra last updated on 28/Sep/16
thank′s for your correction
thanksforyourcorrection

Leave a Reply

Your email address will not be published. Required fields are marked *