Menu Close

Find-the-first-four-terms-of-the-power-series-expansion-of-sinx-1-x-




Question Number 7887 by tawakalitu last updated on 23/Sep/16
Find the first four terms of the power series   expansion of     ((sinx)/(1 − x))
$${Find}\:{the}\:{first}\:{four}\:{terms}\:{of}\:{the}\:{power}\:{series}\: \\ $$$${expansion}\:{of}\:\:\:\:\:\frac{{sinx}}{\mathrm{1}\:−\:{x}}\:\:\: \\ $$
Answered by sandy_suhendra last updated on 23/Sep/16
from the power series :  sin x = Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))              = x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))  (the first four term)  (1/(1−x)) = Σ_(n=0) ^∞  x^n              = 1+x+x^2 +x^3  (the first four term)  so     ((sin x)/(1−x)) = 1(x)+x(−(x^3 /(3!)))+x^2 ((x^5 /(5!)))+x^3 (−(x^7 /(7!)))                         = x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))
$${from}\:{the}\:{power}\:{series}\:: \\ $$$${sin}\:{x}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\:\:\left({the}\:{first}\:{four}\:{term}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{x}^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \:\left({the}\:{first}\:{four}\:{term}\right) \\ $$$${so}\:\:\:\:\:\frac{{sin}\:{x}}{\mathrm{1}−{x}}\:=\:\mathrm{1}\left({x}\right)+{x}\left(−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right)+{x}^{\mathrm{2}} \left(\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}\right)+{x}^{\mathrm{3}} \left(−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}\:−\:\frac{{x}^{\mathrm{4}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{7}} }{\mathrm{5}!}\:−\:\frac{{x}^{\mathrm{10}} }{\mathrm{7}!} \\ $$
Commented by tawakalitu last updated on 23/Sep/16
Thank you so much.
$${Thank}\:{you}\:{so}\:{much}. \\ $$
Commented by Rasheed Soomro last updated on 24/Sep/16
(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!)))(1+x+x^2 +x^3 )=x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))???
$$\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)={x}\:−\:\frac{{x}^{\mathrm{4}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{7}} }{\mathrm{5}!}\:−\:\frac{{x}^{\mathrm{10}} }{\mathrm{7}!}??? \\ $$
Commented by prakash jain last updated on 24/Sep/16
(x−(x^3 /6)+...)(1+x+x^2 +x^3 +..)  =x+x^2 +x^3 +x^4 −(x^3 /6)−(x^4 /6) +(higher order)  =x+x^2 −((5x^3 )/6)−((5x^4 )/6)
$$\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+…\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +..\right) \\ $$$$={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{4}} }{\mathrm{6}}\:+\left(\mathrm{higher}\:\mathrm{order}\right) \\ $$$$={x}+{x}^{\mathrm{2}} −\frac{\mathrm{5}{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{\mathrm{5}{x}^{\mathrm{4}} }{\mathrm{6}} \\ $$
Commented by sandy_suhendra last updated on 28/Sep/16
I thought  ((sin x)/(1−x)) = sinx((1/(1−x)))  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!)) [Σ_(n=0) ^∞  x^n ]  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))  x^n   but I′m wrong, thank′s for your correction
$${I}\:{thought} \\ $$$$\frac{{sin}\:{x}}{\mathrm{1}−{x}}\:=\:{sinx}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right) \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\left[\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{x}^{{n}} \right] \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:{x}^{{n}} \\ $$$${but}\:{I}'{m}\:{wrong},\:{thank}'{s}\:{for}\:{your}\:{correction} \\ $$
Commented by sandy_suhendra last updated on 28/Sep/16
thank′s for your correction
$${thank}'{s}\:{for}\:{your}\:{correction} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *