Menu Close

find-the-general-solution-of-sin4x-cos2x-0-




Question Number 73538 by Rio Michael last updated on 13/Nov/19
find the general solution of    sin4x + cos2x = 0
findthegeneralsolutionofsin4x+cos2x=0
Answered by ajfour last updated on 13/Nov/19
cos 2x(2sin 2x+1)=0  ⇒  2x=(2n+1)(π/2)   or         2x=(4n−1)(π/2)±(π/3)  .
cos2x(2sin2x+1)=02x=(2n+1)π2or2x=(4n1)π2±π3.
Commented by Rio Michael last updated on 13/Nov/19
thanks sir
thankssir
Answered by malwaan last updated on 14/Nov/19
2sin2x cos2x + cos2x =0  cos2x(2sin2x+1)=0  cos2x=0⇒2x=(𝛑/2) + 2n𝛑         ⇒x=(𝛑/4) + n𝛑  or 2sin2x+1=0  ⇒2sin2x=−1⇒sin2x=−(1/2)  ⇒2x=((𝛑/6)+𝛑)+2n𝛑=((7𝛑)/6)+2n𝛑  ⇒x=((7𝛑)/(12)) + n𝛑  or 2x=(2𝛑−(𝛑/6))+2n𝛑           =((11𝛑)/6) +2n𝛑  ⇒x=((11𝛑)/(12)) + n𝛑  ⇒x={((𝛑/4)∨((7𝛑)/(12))∨((11𝛑)/(12)))+n𝛑}
2sin2xcos2x+cos2x=0cos2x(2sin2x+1)=0cos2x=02x=π2+2nπx=π4+nπor2sin2x+1=02sin2x=1sin2x=122x=(π6+π)+2nπ=7π6+2nπx=7π12+nπor2x=(2ππ6)+2nπ=11π6+2nπx=11π12+nπx={(π47π1211π12)+nπ}

Leave a Reply

Your email address will not be published. Required fields are marked *