find-the-general-solution-of-sin4x-cos2x-0- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 73538 by Rio Michael last updated on 13/Nov/19 findthegeneralsolutionofsin4x+cos2x=0 Answered by ajfour last updated on 13/Nov/19 cos2x(2sin2x+1)=0⇒2x=(2n+1)π2or2x=(4n−1)π2±π3. Commented by Rio Michael last updated on 13/Nov/19 thankssir Answered by malwaan last updated on 14/Nov/19 2sin2xcos2x+cos2x=0cos2x(2sin2x+1)=0cos2x=0⇒2x=π2+2nπ⇒x=π4+nπor2sin2x+1=0⇒2sin2x=−1⇒sin2x=−12⇒2x=(π6+π)+2nπ=7π6+2nπ⇒x=7π12+nπor2x=(2π−π6)+2nπ=11π6+2nπ⇒x=11π12+nπ⇒x={(π4∨7π12∨11π12)+nπ} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: m-1-1-r-0-m-1-2m-2r-1-1-m-r-2-r-0-m-2m-2r-1-m-r-2-Next Next post: 3x-5-x-9- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.