Menu Close

find-the-general-solution-of-sin4x-cos2x-0-




Question Number 73538 by Rio Michael last updated on 13/Nov/19
find the general solution of    sin4x + cos2x = 0
$${find}\:{the}\:{general}\:{solution}\:{of}\: \\ $$$$\:{sin}\mathrm{4}{x}\:+\:{cos}\mathrm{2}{x}\:=\:\mathrm{0} \\ $$
Answered by ajfour last updated on 13/Nov/19
cos 2x(2sin 2x+1)=0  ⇒  2x=(2n+1)(π/2)   or         2x=(4n−1)(π/2)±(π/3)  .
$$\mathrm{cos}\:\mathrm{2}{x}\left(\mathrm{2sin}\:\mathrm{2}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{2}{x}=\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\:\:\:{or} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{x}=\left(\mathrm{4}{n}−\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\pm\frac{\pi}{\mathrm{3}}\:\:. \\ $$
Commented by Rio Michael last updated on 13/Nov/19
thanks sir
$${thanks}\:{sir} \\ $$
Answered by malwaan last updated on 14/Nov/19
2sin2x cos2x + cos2x =0  cos2x(2sin2x+1)=0  cos2x=0⇒2x=(𝛑/2) + 2n𝛑         ⇒x=(𝛑/4) + n𝛑  or 2sin2x+1=0  ⇒2sin2x=−1⇒sin2x=−(1/2)  ⇒2x=((𝛑/6)+𝛑)+2n𝛑=((7𝛑)/6)+2n𝛑  ⇒x=((7𝛑)/(12)) + n𝛑  or 2x=(2𝛑−(𝛑/6))+2n𝛑           =((11𝛑)/6) +2n𝛑  ⇒x=((11𝛑)/(12)) + n𝛑  ⇒x={((𝛑/4)∨((7𝛑)/(12))∨((11𝛑)/(12)))+n𝛑}
$$\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}\:\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{x}}\:+\:\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{x}}\:=\mathrm{0} \\ $$$$\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{x}}\left(\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{x}}=\mathrm{0}\Rightarrow\mathrm{2}\boldsymbol{{x}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\:+\:\mathrm{2}\boldsymbol{{n}\pi} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\boldsymbol{{x}}=\frac{\boldsymbol{\pi}}{\mathrm{4}}\:+\:\boldsymbol{{n}\pi} \\ $$$$\boldsymbol{{or}}\:\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}=−\mathrm{1}\Rightarrow\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\boldsymbol{{x}}=\left(\frac{\boldsymbol{\pi}}{\mathrm{6}}+\boldsymbol{\pi}\right)+\mathrm{2}\boldsymbol{{n}\pi}=\frac{\mathrm{7}\boldsymbol{\pi}}{\mathrm{6}}+\mathrm{2}\boldsymbol{{n}\pi} \\ $$$$\Rightarrow\boldsymbol{{x}}=\frac{\mathrm{7}\boldsymbol{\pi}}{\mathrm{12}}\:+\:\boldsymbol{{n}\pi} \\ $$$$\boldsymbol{{or}}\:\mathrm{2}\boldsymbol{{x}}=\left(\mathrm{2}\boldsymbol{\pi}−\frac{\boldsymbol{\pi}}{\mathrm{6}}\right)+\mathrm{2}\boldsymbol{{n}\pi} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{11}\boldsymbol{\pi}}{\mathrm{6}}\:+\mathrm{2}\boldsymbol{{n}\pi} \\ $$$$\Rightarrow\boldsymbol{{x}}=\frac{\mathrm{11}\boldsymbol{\pi}}{\mathrm{12}}\:+\:\boldsymbol{{n}\pi} \\ $$$$\Rightarrow\boldsymbol{{x}}=\left\{\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}\vee\frac{\mathrm{7}\boldsymbol{\pi}}{\mathrm{12}}\vee\frac{\mathrm{11}\boldsymbol{\pi}}{\mathrm{12}}\right)+\boldsymbol{{n}\pi}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *