Menu Close

find-the-integers-x-y-z-n-that-satisfy-2-n-x-y-z-




Question Number 138989 by metamorfose last updated on 20/Apr/21
find the integers x , y , z , n that  satisfy : 2^n =x!+y!+z!
findtheintegersx,y,z,nthatsatisfy:2n=x!+y!+z!
Answered by mindispower last updated on 21/Apr/21
let m=min(x,y,z),if m≥3⇒  x!+y!+z!≡0[3]⇔2^n ≡0[3] impossib since  2,3 are coprime  ⇒m∈{0,1,2} by symetrie of x!+y!+z!  let m=x,x≤y≤z  x=0,1⇒2^n −1=z!+y!≥2⇒n≥2  z!+y!≡1[2]⇒y={0,1}  ⇒2^n −2=z!⇒2(2^(n−1) −1)=z!,we see z≥2  since 2∣2(2^(n−1) −1)  the power of 2 in the 2(2^(n−1) −1)is one since  2^(n−1) −1≡1[2]⇒z<4⇒z∈{2,3}  z=2⇒2^n −2=2⇒n=2  z=3⇒2^n =8⇒n=3  case 2 x=2  ⇒2^n −2=y!+z!⇒2(2^(n−1) −1)=y!+z!,2≤y<4  because power of 2 in 2(2^(n−1) −1)=1  and y≤z if y≥4⇒4∣(y!+z!) ⇒power of 2 in   y!+z! is at less 2 impossibl  if y=2  ⇒2^2 (2^(n−2) −1)=z!⇒no solution  y=3⇒2(2^(n−1) −1)=6+z!  ⇒2^3 (2^(n−3) −1)=z!⇒z={4,5}  z=4⇒24=2^n −8⇒n=5  z=5⇒128=2^n ⇒n=7,ander permutation   of x,y,z
letm=min(x,y,z),ifm3x!+y!+z!0[3]2n0[3]impossibsince2,3arecoprimem{0,1,2}bysymetrieofx!+y!+z!letm=x,xyzx=0,12n1=z!+y!2n2z!+y!1[2]y={0,1}2n2=z!2(2n11)=z!,weseez2since22(2n11)thepowerof2inthe2(2n11)isonesince2n111[2]z<4z{2,3}z=22n2=2n=2z=32n=8n=3case2x=22n2=y!+z!2(2n11)=y!+z!,2y<4becausepowerof2in2(2n11)=1andyzify44(y!+z!)powerof2iny!+z!isatless2impossiblify=222(2n21)=z!nosolutiony=32(2n11)=6+z!23(2n31)=z!z={4,5}z=424=2n8n=5z=5128=2nn=7,anderpermutationofx,y,z
Commented by metamorfose last updated on 21/Apr/21
thnx sir
thnxsir

Leave a Reply

Your email address will not be published. Required fields are marked *