Menu Close

Find-the-integral-dx-x-4-x-2-1-




Question Number 2103 by Yozzi last updated on 02/Nov/15
Find the integral                            ∫(dx/(x^4 −x^2 +1)).
Findtheintegraldxx4x2+1.
Commented by Yozzi last updated on 02/Nov/15
Yup.
Yup.
Commented by prakash jain last updated on 02/Nov/15
one option.   (1/(x^4 −x^2 +1))=(1/(x^4 −x^2 +(1/4)+(3/4)))  =(1/((x^2 −(1/2))^2 −(((i(√3))/2))^2 ))  =((1/(i(√3))))[(1/(x^2 −(1/2)−((i(√3))/2)))−(1/(x^2 −(1/2)+((i(√3))/2)))]
oneoption.1x4x2+1=1x4x2+14+34=1(x212)2(i32)2=(1i3)[1x212i321x212+i32]
Commented by Yozzi last updated on 03/Nov/15
Is that the only way one could  solve that integral?
Isthattheonlywayonecouldsolvethatintegral?
Commented by prakash jain last updated on 03/Nov/15
x=tan u  dx=(du/(cos^2 u))  (1/(((sin^4 u)/(cos^2 u))−sin^2 u+1))=((cos^2 u)/(sin^4 u−sin^2 ucos^2 u+cos^2 u))  =((2cos^2 u)/(2−(sin 2u)^2 ))  This can be integrated without using i.
x=tanudx=ducos2u1sin4ucos2usin2u+1=cos2usin4usin2ucos2u+cos2u=2cos2u2(sin2u)2Thiscanbeintegratedwithoutusingi.
Answered by prakash jain last updated on 03/Nov/15
(d/du)sin 2u=2(cos2u)=2(2cos^2 u−1)  dy=2cos2udu=  ((2cos^2 u)/(2−(sin 2u)^2 ))=(1/2)[((2(2cos^2 u−1))/(2−(sin 2u)^2 ))+(2/(2−(sin 2u)^2 ))]  part Awill inegrate to  ln ((√2)−sin 2u)−ln ((√2)+sin 2u)    (2/(2−(sin2u)^2  )) to be done
ddusin2u=2(cos2u)=2(2cos2u1)dy=2cos2udu=2cos2u2(sin2u)2=12[2(2cos2u1)2(sin2u)2+22(sin2u)2]partAwillinegratetoln(2sin2u)ln(2+sin2u)22(sin2u)2tobedone
Commented by prakash jain last updated on 03/Nov/15
∫(du/(2−sin 2u))=(1/(2(√2)))tan^(−1) (((tan 2x)/( (√2))))
du2sin2u=122tan1(tan2x2)

Leave a Reply

Your email address will not be published. Required fields are marked *