Menu Close

Find-the-integral-xcosh-lnx-n-dx-where-n-0-1-2-




Question Number 2069 by Yozzi last updated on 01/Nov/15
Find the integral                      ∫(xcosh(lnx))^n dx  where n=0,1,2,...
Findtheintegral(xcosh(lnx))ndxwheren=0,1,2,
Commented by prakash jain last updated on 01/Nov/15
cosh (ln x)=(1/2)(x+(1/x))  x ∙ cosh (ln x)=((x^2 +1)/2)  I=∫(((x^2 +1)/2))^n dx
cosh(lnx)=12(x+1x)xcosh(lnx)=x2+12I=(x2+12)ndx
Answered by prakash jain last updated on 01/Nov/15
I=(1/2^n )∫(1+x^2 )^n dx  =(1/2^n )∫(^n C_0 +^n C_1 x^2 +^n C_2 x^4 +....+^n C_n x^(2n) )dx  =(1/2^n )(^n C_0 x+^n C_1 (x^3 /3)+....+^n C_n  (x^(2n+1) /(2n+1)))
I=12n(1+x2)ndx=12n(nC0+nC1x2+nC2x4+.+nCnx2n)dx=12n(nC0x+nC1x33+.+nCnx2n+12n+1)

Leave a Reply

Your email address will not be published. Required fields are marked *