Menu Close

Find-the-Integration-Value-1-x-d-x-1-3-x-2-dx-x-1-2-x-1-4-




Question Number 140330 by Satyendra last updated on 06/May/21
Find the Integration Value:  1  ∫(((√x)d(x))/(1+^3 (√x)))=?  2 ∫(dx/(x^(1/2) −x^(1/4) ))=?
$${Find}\:{the}\:{Integration}\:{Value}: \\ $$$$\mathrm{1} \:\int\frac{\sqrt{{x}}{d}\left({x}\right)}{\mathrm{1}+^{\mathrm{3}} \sqrt{{x}}}=? \\ $$$$\mathrm{2} \int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }=? \\ $$
Answered by john_santu last updated on 06/May/21
(1) let x = t^6  →dx = 6t^5  dt  I= ∫ (t^3 /(1+t^2 )) (6t^5  dt )  I= ∫ ((6t^8 )/(1+t^2 )) dt .  now it easy to solve
$$\left(\mathrm{1}\right)\:{let}\:{x}\:=\:{t}^{\mathrm{6}} \:\rightarrow{dx}\:=\:\mathrm{6}{t}^{\mathrm{5}} \:{dt} \\ $$$${I}=\:\int\:\frac{{t}^{\mathrm{3}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:\left(\mathrm{6}{t}^{\mathrm{5}} \:{dt}\:\right) \\ $$$${I}=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{8}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:. \\ $$$${now}\:{it}\:{easy}\:{to}\:{solve} \\ $$
Answered by benjo_mathlover last updated on 06/May/21
(2) I= ∫ (dx/( (√x)−(x)^(1/4) ))   let x = z^4  →dx = 4z^3  dz  I= ∫ ((4z^3 )/(z^2 −z)) dz = ∫ ((4z^2 )/(z−1)) dz   use partial fraction
$$\left(\mathrm{2}\right)\:\mathrm{I}=\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{x}}}\: \\ $$$$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{z}^{\mathrm{4}} \:\rightarrow\mathrm{dx}\:=\:\mathrm{4z}^{\mathrm{3}} \:\mathrm{dz} \\ $$$$\mathrm{I}=\:\int\:\frac{\mathrm{4z}^{\mathrm{3}} }{\mathrm{z}^{\mathrm{2}} −\mathrm{z}}\:\mathrm{dz}\:=\:\int\:\frac{\mathrm{4z}^{\mathrm{2}} }{\mathrm{z}−\mathrm{1}}\:\mathrm{dz}\: \\ $$$$\mathrm{use}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *