Menu Close

Find-the-interval-for-which-the-function-f-x-sinx-cosx-for-x-0-2pi-is-strictly-inceasing-and-srictly-decreasing-




Question Number 75368 by vishalbhardwaj last updated on 10/Dec/19
  Find the interval for which the function   f(x) = sinx + cosx, for  x∈ [0, 2π]  is strictly inceasing and srictly decreasing ?
Findtheintervalforwhichthefunctionf(x)=sinx+cosx,forx[0,2π]isstrictlyinceasingandsrictlydecreasing?
Commented by vishalbhardwaj last updated on 10/Dec/19
please sir, write complete explanation  of intervals
pleasesir,writecompleteexplanationofintervals
Answered by MJS last updated on 10/Dec/19
f′(x)=cos x −sin x  f′(x)=0  sin x =cos x  x=(π/4)∨x=((5π)/4)  f′′(x)=−sin x −cos x  f′′((π/4))<0 ⇒ maximum  f′′(((5π)/4))>0 ⇒ minimum  [0; (π/4)[ f(x) strictly increasing  ](π/4); ((5π)/4)[ f(x) strictly decreasing  ]((5π)/4); 2π] f(x) strictly increasing
f(x)=cosxsinxf(x)=0sinx=cosxx=π4x=5π4f(x)=sinxcosxf(π4)<0maximumf(5π4)>0minimum[0;π4[f(x)strictlyincreasing]π4;5π4[f(x)strictlydecreasing]5π4;2π]f(x)strictlyincreasing
Commented by vishalbhardwaj last updated on 10/Dec/19
sir please solve by first derivative rule  and please explane by taking any value in   between the intervals
sirpleasesolvebyfirstderivativeruleandpleaseexplanebytakinganyvalueinbetweentheintervals
Commented by MJS last updated on 10/Dec/19
I don′t know this rule. the proper way I used  is to find the zeros of the first derivate to get  extremes and then check the second derivate  to find if these are maxima or minima  f′(p)=0∧f′′(p)<0 ⇔ max at p  f′(p)=0∧f′′(p)>0 ⇔ min at p
Idontknowthisrule.theproperwayIusedistofindthezerosofthefirstderivatetogetextremesandthencheckthesecondderivatetofindifthesearemaximaorminimaf(p)=0f(p)<0maxatpf(p)=0f(p)>0minatp
Answered by Kunal12588 last updated on 10/Dec/19
f ′(x)=cos x − sin x=(√2)cos((π/4)+x)  f ′(x)=0  ⇒cos((π/4)+x)=0  ⇒x=2nπ±(π/2)−(π/4)=2nπ+(π/4),2nπ−((3π)/4)  which divides [0,2π] into 3 intervals  [0,(π/4)),((π/4),((5π)/4)),(((5π)/4),2π]  interval ∣sign of f ′(x)∣nature of f(x)  [0,(π/4))           ∣           (+)            ∣ strictly increasing  ((π/4),((5π)/4))       ∣           (−)           ∣ strictly decreasing  (((5π)/4),2π]        ∣            (+)          ∣    stictly increasing  ∴ f(x) is increasing in [0,(π/4))∪(((5π)/4),2π]   f(x) is decreasing in ((π/4),((5π)/4))  [Note: this answer is not valid for every  value of x, only for the domain [0,2π]  ]
f(x)=cosxsinx=2cos(π4+x)f(x)=0cos(π4+x)=0x=2nπ±π2π4=2nπ+π4,2nπ3π4whichdivides[0,2π]into3intervals[0,π4),(π4,5π4),(5π4,2π]intervalsignoff(x)natureoff(x)[0,π4)(+)strictlyincreasing(π4,5π4)()strictlydecreasing(5π4,2π](+)stictlyincreasingf(x)isincreasingin[0,π4)(5π4,2π]f(x)isdecreasingin(π4,5π4)[Note:thisanswerisnotvalidforeveryvalueofx,onlyforthedomain[0,2π]]

Leave a Reply

Your email address will not be published. Required fields are marked *