Menu Close

Find-the-length-of-the-arc-of-the-hyperbolic-spiral-r-a-lying-between-r-a-and-r-2a-




Question Number 11413 by agni5 last updated on 24/Mar/17
Find the length of the arc of the hyperbolic  spiral  rθ=a  lying between  r=a  and   r=2a.
Findthelengthofthearcofthehyperbolicspiralrθ=alyingbetweenr=aandr=2a.
Answered by mrW1 last updated on 26/Mar/17
r=(a/θ)  (dr/dθ)=−(a/θ^2 )  (√(r^2 +((dr/dθ))^2 ))=((a(√(1+θ^2 )))/θ^2 )  L=∫_θ_1  ^θ_2  (√(r^2 +((dr/dθ))^2 ))dθ=a∫_θ_1  ^θ_2  ((√(1+θ^2 ))/θ^2 )dθ  =a[−((√(1+θ^2 ))/θ)+ln (θ+(√(1+θ^2 )))]_θ_1  ^θ_2    =a[((√(1+θ_1 ^2 ))/θ_1 )−((√(1+θ_2 ^2 ))/θ_2 )+ln ((θ_2 +(√(1+θ_2 ^2 )))/(θ_1 +(√(1+θ_1 ^2 ))))]    with θ_1 =(a/r_1 )=(a/(2a))=(1/2) and θ_2 =(a/r_2 )=(a/a)=1  L=a[((√(1+(1/4)))/(1/2))−((√(1+1))/1)+ln ((1+(√(1+1)))/((1/2)+(√(1+(1/4)))))]  L=a[(√5)−(√2)+ln ((2(1+(√2)))/(1+(√5)))]
r=aθdrdθ=aθ2r2+(drdθ)2=a1+θ2θ2L=θ1θ2r2+(drdθ)2dθ=aθ1θ21+θ2θ2dθ=a[1+θ2θ+ln(θ+1+θ2)]θ1θ2=a[1+θ12θ11+θ22θ2+lnθ2+1+θ22θ1+1+θ12]withθ1=ar1=a2a=12andθ2=ar2=aa=1L=a[1+14121+11+ln1+1+112+1+14]L=a[52+ln2(1+2)1+5]
Commented by mrW1 last updated on 26/Mar/17
the answer is corrected.  please see also Q11433.
theansweriscorrected.pleaseseealsoQ11433.

Leave a Reply

Your email address will not be published. Required fields are marked *