Menu Close

find-the-length-r-2-1-cos-if-between-pi-2-to-pi-




Question Number 66520 by mhmd last updated on 16/Aug/19
find the length r=2/1−cosθ         if θ between pi/2 to pi
findthelengthr=2/1cosθifθbetweenpi/2topi
Commented by kaivan.ahmadi last updated on 16/Aug/19
l=∫_(π/2) ^π (√(((dr/dθ))^2 +r^2 ))dθ  (dr/dθ)=((2sinθ)/((1−cosθ)^2 ))  ⇒∫_(π/2) ^π (√(((4sin^2 θ)/((1−cosθ)^4 ))+(4/((1−cosθ)^2 ))))dθ=∫_(π/2) ^π (√((4sin^2 θ+4(1−cosθ)^2 )/((1−cosθ)^4 )))dθ=  ∫_(π/2) ^π (√((8(1−cosθ))/((1−cosθ)^4 )))dθ=∫_(π/2) ^π (√(8/((1−cosθ)^3 )))dθ=  ∫_(π/2) ^π (√(8/(8sin^6 (θ/2))))dθ=∫_(π/2) ^π (1/(sin^3 (θ/2)))dθ=∫_(π/2) ^π ((sin(θ/2))/(sin^4 (θ/2)))dθ=  ∫_(π/2) ^π ((sin(θ/2))/((1−cos^2 (θ/2))^2 ))dθ  set u=cos(θ/2) ,it is easy now.
l=π2π(drdθ)2+r2dθdrdθ=2sinθ(1cosθ)2π2π4sin2θ(1cosθ)4+4(1cosθ)2dθ=π2π4sin2θ+4(1cosθ)2(1cosθ)4dθ=π2π8(1cosθ)(1cosθ)4dθ=π2π8(1cosθ)3dθ=π2π88sin6θ2dθ=π2π1sin3θ2dθ=π2πsinθ2sin4θ2dθ=π2πsinθ2(1cos2θ2)2dθsetu=cosθ2,itiseasynow.

Leave a Reply

Your email address will not be published. Required fields are marked *