Menu Close

Find-the-limit-limit-1-mt-2-t-t-




Question Number 5593 by sanusihammed last updated on 21/May/16
Find the limit    limit       [1 + mt]^(2/t)   t →∞
Findthelimitlimit[1+mt]2tt
Answered by FilupSmith last updated on 21/May/16
L=lim_(t→∞)  (1+mt)^(2/t)   =lim_(t→∞)  e^(ln((1+mt)^(2/t) ))   =lim_(t→∞)  e^((2/t)ln(1+mt))   e^x =exp(x)      change of notation for                               easier writing  =lim_(t→∞)  exp(((2ln(1+mt))/t))  =exp(lim_(t→∞)  ((2ln(1+mt))/t))  use L′Hopital′s Law  L=exp(lim_(t→∞)  ((2×k)/1))  k=(d/dt)(ln(1+mt))  let u=1+mt  ⇒  du=mdt  k=(d/dt)mln(u)  k=(m/(1+mt))  ∴L=exp(lim_(t→∞)  ((2(m/(1+mt)))/1))  L=exp(lim_(t→∞)  2(m/(1+mt)))  L=exp(2×0)  L=1    ∴lim_(t→∞)  (1+mt)^(2/t) =1
L=limt(1+mt)2/t=limteln((1+mt)2/t)=limte2tln(1+mt)ex=exp(x)changeofnotationforeasierwriting=limtexp(2ln(1+mt)t)=exp(limt2ln(1+mt)t)useLHopitalsLawL=exp(limt2×k1)k=ddt(ln(1+mt))letu=1+mtdu=mdtk=ddtmln(u)k=m1+mtL=exp(limt2m1+mt1)L=exp(limt2m1+mt)L=exp(2×0)L=1limt(1+mt)2/t=1
Commented by FilupSmith last updated on 22/May/16
Not that I can work out
NotthatIcanworkout
Commented by FilupSmith last updated on 22/May/16
No problem
Noproblem
Commented by sanusihammed last updated on 21/May/16
Thanks so much. God bless you
Thankssomuch.Godblessyou
Commented by Rasheed Soomro last updated on 22/May/16
Could the problem be solved without  using calculus?
Couldtheproblembesolvedwithoutusingcalculus?

Leave a Reply

Your email address will not be published. Required fields are marked *