Menu Close

Find-the-limit-of-this-sequence-2-2-2-2-2-2-2-2-2-2-Show-that-the-sum-of-the-terms-of-this-infinite-sequence-does-not-converge-




Question Number 1608 by 112358 last updated on 26/Aug/15
Find the limit of this sequence.  (√2),(√(2(√2))),(√(2(√(2(√2))))),(√(2(√(2(√(2(√2))))))),...  Show that the sum of the  terms of this infinite sequence  does not converge.
$${Find}\:{the}\:{limit}\:{of}\:{this}\:{sequence}. \\ $$$$\sqrt{\mathrm{2}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}},… \\ $$$${Show}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$${terms}\:{of}\:{this}\:{infinite}\:{sequence} \\ $$$${does}\:{not}\:{converge}. \\ $$
Commented by Rasheed Ahmad last updated on 26/Aug/15
Let (√(2(√(2(√(2(√(2...))))))))=x  Squaring both sides,           2(√(2(√(2(√(2...))))))=x^2            2.x=x^2           x=2  The limit of the sequence=2
$${Let}\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}…}}}}={x} \\ $$$${Squaring}\:{both}\:{sides}, \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}…}}}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}.{x}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{x}=\mathrm{2} \\ $$$${The}\:{limit}\:{of}\:{the}\:{sequence}=\mathrm{2} \\ $$$$ \\ $$
Commented by 112358 last updated on 26/Aug/15
Indeed it is! L=2 .
$${Indeed}\:{it}\:{is}!\:{L}=\mathrm{2}\:. \\ $$
Answered by 123456 last updated on 26/Aug/15
a_n =(√(2a_(n−1) ))  a_0 =(√2)  a_n >0⇒2a_n >0⇒(√(2a_n ))>0⇒a_(n+1) >0  0<a_n <2⇒0<2a_n <4⇒0<(√(2a_n ))<2⇒0<a_(n+1) <2  0<a_n <a_(n+1) <2⇒0<2a_n <2a_(n+1) <4⇒0<(√(2a_n ))<(√(2a_(n+1) ))<2⇒0<a_(n+1) <a_(n+2) <2  0<a_(n+1) <a_n <2⇒0<2a_(n+1) <2a_n <4⇒0<(√(2a_(n+1) ))<(√(2a_n ))<2⇒0<a_(n+2) <a_(n+1) <2  a_0 =(√2),a_1 =(√(2(√2)))⇒a_1 >a_0 , the a is crescent  since a is bounced and crescent, lim_(n→+∞)  a_n  exists  a_(n+1) =a_n =a  a=(√(2a))⇒a^2 =2a⇒a(a−2)=0⇒a=0∨a=2  since it crescent them a=2,lim_(n→+∞)  a_n =a=2  S=Σ_(n=0) ^(+∞) a_n   since lim_(n→+∞)  a_n ≠0, then the serie diverge
$${a}_{{n}} =\sqrt{\mathrm{2}{a}_{{n}−\mathrm{1}} } \\ $$$${a}_{\mathrm{0}} =\sqrt{\mathrm{2}} \\ $$$${a}_{{n}} >\mathrm{0}\Rightarrow\mathrm{2}{a}_{{n}} >\mathrm{0}\Rightarrow\sqrt{\mathrm{2}{a}_{{n}} }>\mathrm{0}\Rightarrow{a}_{{n}+\mathrm{1}} >\mathrm{0} \\ $$$$\mathrm{0}<{a}_{{n}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$$$\mathrm{0}<{a}_{{n}} <{a}_{{n}+\mathrm{1}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}} <\mathrm{2}{a}_{{n}+\mathrm{1}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}} }<\sqrt{\mathrm{2}{a}_{{n}+\mathrm{1}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}+\mathrm{2}} <\mathrm{2} \\ $$$$\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}+\mathrm{1}} <\mathrm{2}{a}_{{n}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}+\mathrm{1}} }<\sqrt{\mathrm{2}{a}_{{n}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{2}} <{a}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$$${a}_{\mathrm{0}} =\sqrt{\mathrm{2}},{a}_{\mathrm{1}} =\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}\Rightarrow{a}_{\mathrm{1}} >{a}_{\mathrm{0}} ,\:\mathrm{the}\:{a}\:\mathrm{is}\:\mathrm{crescent} \\ $$$$\mathrm{since}\:{a}\:\mathrm{is}\:\mathrm{bounced}\:\mathrm{and}\:\mathrm{crescent},\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} \:\mathrm{exists} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} ={a} \\ $$$${a}=\sqrt{\mathrm{2}{a}}\Rightarrow{a}^{\mathrm{2}} =\mathrm{2}{a}\Rightarrow{a}\left({a}−\mathrm{2}\right)=\mathrm{0}\Rightarrow{a}=\mathrm{0}\vee{a}=\mathrm{2} \\ $$$$\mathrm{since}\:\mathrm{it}\:\mathrm{crescent}\:\mathrm{them}\:{a}=\mathrm{2},\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} ={a}=\mathrm{2} \\ $$$$\mathrm{S}=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{n}} \\ $$$$\mathrm{since}\:\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} \neq\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{serie}\:\mathrm{diverge} \\ $$
Commented by Rasheed Ahmad last updated on 27/Aug/15
What is meant by ′crescent′?  I am asking for the sake of  knowledge.
$${What}\:{is}\:{meant}\:{by}\:'{crescent}'? \\ $$$${I}\:{am}\:{asking}\:{for}\:{the}\:{sake}\:{of} \\ $$$${knowledge}. \\ $$
Commented by 123456 last updated on 27/Aug/15
growing or something like this (sorry about my bad english)  as shown  0<a_n <a_(n+1) <2⇒0<a_(n+1) <a_(n+2) <2  since 0<a_0 <a_1 <2, them (0<2<2(√2)<4⇒0<(√2)<(√(2(√2)))<2)  0<a_0 <a_1 <a_2 <a_3 <∙∙∙<2
$$\mathrm{growing}\:\mathrm{or}\:\mathrm{something}\:\mathrm{like}\:\mathrm{this}\:\left(\mathrm{sorry}\:\mathrm{about}\:\mathrm{my}\:\mathrm{bad}\:\mathrm{english}\right) \\ $$$$\mathrm{as}\:\mathrm{shown} \\ $$$$\mathrm{0}<{a}_{{n}} <{a}_{{n}+\mathrm{1}} <\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}+\mathrm{2}} <\mathrm{2} \\ $$$$\mathrm{since}\:\mathrm{0}<{a}_{\mathrm{0}} <{a}_{\mathrm{1}} <\mathrm{2},\:\mathrm{them}\:\left(\mathrm{0}<\mathrm{2}<\mathrm{2}\sqrt{\mathrm{2}}<\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}}<\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}<\mathrm{2}\right) \\ $$$$\mathrm{0}<{a}_{\mathrm{0}} <{a}_{\mathrm{1}} <{a}_{\mathrm{2}} <{a}_{\mathrm{3}} <\centerdot\centerdot\centerdot<\mathrm{2} \\ $$
Commented by 112358 last updated on 27/Aug/15
He/she′s saying that the terms   of the sequence are perpetually  increasing to a limiting value of   2. Hence, the sequence is  monotonic and upper bounded.  i.e  a_n ≤M for all  n  and  a_(n+1) ≥a_n  for all  n.  Generally, all sequences which  are monotonic (only increasing  or decreasing but not both) and bounded  (upper or lower[a_n >M  for any  finite n]) are convergent. This  is called the monotonic   sequence theorem.
$${He}/{she}'{s}\:{saying}\:{that}\:{the}\:{terms}\: \\ $$$${of}\:{the}\:{sequence}\:{are}\:{perpetually} \\ $$$${increasing}\:{to}\:{a}\:{limiting}\:{value}\:{of}\: \\ $$$$\mathrm{2}.\:{Hence},\:{the}\:{sequence}\:{is} \\ $$$${monotonic}\:{and}\:{upper}\:{bounded}. \\ $$$${i}.{e}\:\:{a}_{{n}} \leqslant{M}\:{for}\:{all}\:\:{n}\:\:{and} \\ $$$${a}_{{n}+\mathrm{1}} \geqslant{a}_{{n}} \:{for}\:{all}\:\:{n}. \\ $$$${Generally},\:{all}\:{sequences}\:{which} \\ $$$${are}\:{monotonic}\:\left({only}\:{increasing}\right. \\ $$$$\left.{or}\:{decreasing}\:{but}\:{not}\:{both}\right)\:{and}\:{bounded} \\ $$$$\left({upper}\:{or}\:{lower}\left[{a}_{{n}} >{M}\:\:{for}\:{any}\right.\right. \\ $$$$\left.{f}\left.{inite}\:{n}\right]\right)\:{are}\:{convergent}.\:{This} \\ $$$${is}\:{called}\:{the}\:{monotonic}\: \\ $$$${sequence}\:{theorem}. \\ $$
Commented by Rasheed Ahmad last updated on 27/Aug/15
Thanks to both of you!
$$\boldsymbol{\mathrm{Thanks}}\:\mathrm{to}\:\mathrm{both}\:\mathrm{of}\:\mathrm{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *