Menu Close

Find-the-locus-in-the-complex-plain-such-that-arg-z-z-2-2-please-help-




Question Number 6044 by sanusihammed last updated on 10/Jun/16
Find the locus in the complex plain such that   arg ((z/(z + 2))) = (Π/2)    please help.
$${Find}\:{the}\:{locus}\:{in}\:{the}\:{complex}\:{plain}\:{such}\:{that}\: \\ $$$${arg}\:\left(\frac{{z}}{{z}\:+\:\mathrm{2}}\right)\:=\:\frac{\Pi}{\mathrm{2}} \\ $$$$ \\ $$$${please}\:{help}. \\ $$
Commented by Yozzii last updated on 10/Jun/16
arg(z−0)−arg(z−(−2))=(π/2)  The locus of z is a semicircle   since the angle between the lines  represented by the complex numbers z−0 and z−(−2) is   always (π/2). So z lies on the circle   ∣z−0.5(0−(−2)∣=∣z+1∣=0.5(0−(−2))=1 for Im(z)>0  or z∈{z∈C: ∣z+1∣=1 & Im(z)>0}.  Since π/2>0 it must be that arg(z)>arg(z+2)  and we cannot choose the semicircle ∣z+1∣=1  where Im(z)<0.  Below is an image showing the line  segments for z from the origin and    z+2 from the point (−2,0) in  the complex plane,respectively.
$${arg}\left({z}−\mathrm{0}\right)−{arg}\left({z}−\left(−\mathrm{2}\right)\right)=\frac{\pi}{\mathrm{2}} \\ $$$${The}\:{locus}\:{of}\:{z}\:{is}\:{a}\:{semicircle}\: \\ $$$${since}\:{the}\:{angle}\:{between}\:{the}\:{lines} \\ $$$${represented}\:{by}\:{the}\:{complex}\:{numbers}\:{z}−\mathrm{0}\:{and}\:{z}−\left(−\mathrm{2}\right)\:{is}\: \\ $$$${always}\:\frac{\pi}{\mathrm{2}}.\:{So}\:{z}\:{lies}\:{on}\:{the}\:{circle}\: \\ $$$$\mid{z}−\mathrm{0}.\mathrm{5}\left(\mathrm{0}−\left(−\mathrm{2}\right)\mid=\mid{z}+\mathrm{1}\mid=\mathrm{0}.\mathrm{5}\left(\mathrm{0}−\left(−\mathrm{2}\right)\right)=\mathrm{1}\:{for}\:{Im}\left({z}\right)>\mathrm{0}\right. \\ $$$${or}\:{z}\in\left\{{z}\in\mathbb{C}:\:\mid{z}+\mathrm{1}\mid=\mathrm{1}\:\&\:{Im}\left({z}\right)>\mathrm{0}\right\}. \\ $$$${Since}\:\pi/\mathrm{2}>\mathrm{0}\:{it}\:{must}\:{be}\:{that}\:{arg}\left({z}\right)>{arg}\left({z}+\mathrm{2}\right) \\ $$$${and}\:{we}\:{cannot}\:{choose}\:{the}\:{semicircle}\:\mid{z}+\mathrm{1}\mid=\mathrm{1} \\ $$$${where}\:{Im}\left({z}\right)<\mathrm{0}. \\ $$$${Below}\:{is}\:{an}\:{image}\:{showing}\:{the}\:{line} \\ $$$${segments}\:{for}\:{z}\:{from}\:{the}\:{origin}\:{and}\: \\ $$$$\:{z}+\mathrm{2}\:{from}\:{the}\:{point}\:\left(−\mathrm{2},\mathrm{0}\right)\:{in} \\ $$$${the}\:{complex}\:{plane},{respectively}. \\ $$
Commented by Yozzii last updated on 10/Jun/16

Leave a Reply

Your email address will not be published. Required fields are marked *