Menu Close

Find-the-maximum-and-minimum-values-of-1-y-5sinx-2cosx-2-y-sin-2-x-3cos-2-x-




Question Number 136827 by otchereabdullai@gmail.com last updated on 26/Mar/21
Find the maximum and minimum  values of:   1) y=5sinx 2cosx  2) y=sin^2 x+3cos^2 x
Findthemaximumandminimumvaluesof:1)y=5sinx2cosx2)y=sin2x+3cos2x
Commented by mr W last updated on 26/Mar/21
do you mean y=5 sin x+2 cos x ?  if yes, then  y=5 sin x+2 cos x  y=(√(5^2 +2^2 ))((5/( (√(5^2 +2^2 )))) sin x+(2/( (√(5^2 +2^2 )))) cos x)  y=(√(5^2 +2^2 ))(cos α sin x+sin α cos x)  y=(√(29)) sin(x+α) with α=tan^(−1) (2/5)  ⇒y_(min) =−(√(29))  ⇒y_(max) =(√(29))
doyoumeany=5sinx+2cosx?ifyes,theny=5sinx+2cosxy=52+22(552+22sinx+252+22cosx)y=52+22(cosαsinx+sinαcosx)y=29sin(x+α)withα=tan125ymin=29ymax=29
Commented by otchereabdullai@gmail.com last updated on 27/Mar/21
Thanks alot prof  what of if we look at the question this  way    y=5sinx2cosx
Thanksalotprofwhatofifwelookatthequestionthiswayy=5sinx2cosx
Commented by mr W last updated on 27/Mar/21
y=5 sin x ×2 cos x  y=5 sin 2x  y_(min) =−5  y_(max) =5
y=5sinx×2cosxy=5sin2xymin=5ymax=5
Commented by otchereabdullai@gmail.com last updated on 27/Mar/21
thank you prof
thankyouprof
Answered by bramlexs22 last updated on 26/Mar/21
(2) y=sin^2 x+3−3sin^2 x  y =3−2sin^2 x   we know that 0 ≤sin^2 x≤1  so −2≤−2sin^2 x ≤ 0  ⇔ 3−2≤3−2sin^2 x ≤ 3+0  ⇒1 ≤ y ≤ 3   { ((min=1)),((max=3)) :}
(2)y=sin2x+33sin2xy=32sin2xweknowthat0sin2x1so22sin2x03232sin2x3+01y3{min=1max=3
Commented by otchereabdullai@gmail.com last updated on 27/Mar/21
thanks for the help sir!
thanksforthehelpsir!

Leave a Reply

Your email address will not be published. Required fields are marked *