Menu Close

Find-the-maximum-area-of-an-isosceles-triangle-inscribed-in-an-ellipse-x-2-a-2-y-2-b-2-1with-its-vetrex-at-one-end-of-the-major-axis-




Question Number 76077 by vishalbhardwaj last updated on 23/Dec/19
Find the maximum area of an isosceles triangle  inscribed in an ellipse (x^2 /a^2 ) + (y^2 /b^2 ) = 1with its vetrex   at one end of the major axis ? ?
Findthemaximumareaofanisoscelestriangleinscribedinanellipsex2a2+y2b2=1withitsvetrexatoneendofthemajoraxis??
Commented by MJS last updated on 23/Dec/19
the centroid of the triangle is in the center  of the ellipse  the idea is:  construct a circle with r=a  insert an equilateral triangle with one vertex  in  ((a),(0) )  now multiply all y−values by (b/a)  ⇒ the circle becomes the ellipse  ⇒ the triangle becomes the one you′re       searching
thecentroidofthetriangleisinthecenteroftheellipsetheideais:constructacirclewithr=ainsertanequilateraltrianglewithonevertexin(a0)nowmultiplyallyvaluesbybathecirclebecomestheellipsethetrianglebecomestheoneyouresearching
Commented by MJS last updated on 23/Dec/19
btw all triangles you construct this way,  out of an equilateral triangle, no matter  where you put the vertices on the circle  will share the same maximum area
btwalltrianglesyouconstructthisway,outofanequilateraltriangle,nomatterwhereyouputtheverticesonthecirclewillsharethesamemaximumarea
Commented by vishalbhardwaj last updated on 23/Dec/19
sir can you give a formate of solution regarding this
sircanyougiveaformateofsolutionregardingthis
Answered by MJS last updated on 23/Dec/19
equilateral triangle in circle with radius a   A= ((a),(0) )  B= (((−(a/2))),(((a(√3))/2)) )  C= (((−(a/2))),((−((a(√3))/2))) )  x^∗ =x; y^∗ =(b/a)y  A^∗ = ((a),(0) )  B^∗ = (((−(a/2))),(((b(√3))/2)) )  C^∗ = (((−(a/2))),((−((b(√3))/2))) )  area ABC =((3a^2 (√3))/4)    area A^∗ B^∗ C^∗  =((3ab(√3))/4)  side lengths B^∗ C^∗ =b(√3); A^∗ B^∗ =C^∗ A^∗ =((√3)/2)(√(3a^2 +b^2 ))
equilateraltriangleincirclewithradiusaA=(a0)B=(a2a32)C=(a2a32)x=x;y=bayA=(a0)B=(a2b32)C=(a2b32)areaABC=3a234areaABC=3ab34sidelengthsBC=b3;AB=CA=323a2+b2
Commented by vishalbhardwaj last updated on 23/Dec/19
Dear sir, can we solve this question by using   differentiation(maxima and minima condition)
Dearsir,canwesolvethisquestionbyusingdifferentiation(maximaandminimacondition)
Answered by MJS last updated on 23/Dec/19
A= ((a),(0) )  B= ((x),(((b/a)(√(a^2 −x^2 )))) )  C= ((x),((−(b/a)(√(a^2 −x^2 )))) )  ∣AB∣^2 =∣CA∣^2 =(x−a)(x−((a(a^2 +b^2 ))/(a^2 −b^2 )))  ∣BC∣^2 =((4b^2 )/a^2 )(a^2 −x^2 )  area (o, p, q) =  =(1/4)(√((o+p+q)(−o+p+q)(o−p+q)(o+p−q)))  =(1/4)(√(2(o^2 p^2 +o^2 q^2 +p^2 q^2 −(o^4 +p^4 +q^4 )))  area (o, p, p) =(1/4)o(√(4p^2 −o^2 ))  o^2 =((4b^2 )/a^2 )(a^2 −x^2 )∧p^2 =(x−a)(x−((a(a^2 +b^2 ))/(a^2 −b^2 )))  area (o, p, p) =(b/a)∣x−a∣(√(a^2 −x^2 ))  (d/dx)[(b/a)∣x−a∣(√(a^2 −x^2 ))]=±((b(2x^2 −ax−a^2 ))/(a(√(a^2 −x^3 ))))=0  ⇒ x=−(a/2)
A=(a0)B=(xbaa2x2)C=(xbaa2x2)AB2=∣CA2=(xa)(xa(a2+b2)a2b2)BC2=4b2a2(a2x2)area(o,p,q)==14(o+p+q)(o+p+q)(op+q)(o+pq)=142(o2p2+o2q2+p2q2(o4+p4+q4)area(o,p,p)=14o4p2o2o2=4b2a2(a2x2)p2=(xa)(xa(a2+b2)a2b2)area(o,p,p)=baxaa2x2ddx[baxaa2x2]=±b(2x2axa2)aa2x3=0x=a2

Leave a Reply

Your email address will not be published. Required fields are marked *