Question Number 141135 by bobhans last updated on 16/May/21
$$\:\:\:\:\:\:\:{Find}\:{the}\:{minimum}\:{of}\: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{12}}{{x}}\:+\:\frac{\mathrm{18}}{{y}}\:+\:{xy}\:{for}\:{all}\: \\ $$$$\:\:\:\:\:\:{positive}\:{number}\:{x}\:\&\:{y}\:. \\ $$
Answered by mitica last updated on 16/May/21
$$\frac{\mathrm{12}}{{x}}+\frac{\mathrm{18}}{{y}}+{xy}\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{12}}{{x}}\centerdot\frac{\mathrm{18}}{{y}}\centerdot{xy}}=\mathrm{18} \\ $$$$=\:{for}\:\frac{\mathrm{12}}{{x}}=\frac{\mathrm{18}}{{y}}={xy}\Leftrightarrow{x}=\mathrm{2},{y}=\mathrm{3} \\ $$$$\Rightarrow{min}=\mathrm{18} \\ $$
Commented by mitica last updated on 16/May/21
$${x}=\mathrm{2},{y}=\mathrm{3} \\ $$
Commented by iloveisrael last updated on 16/May/21
$${x}\:=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}\:;\:{y}\:=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{9}}{\mathrm{2}}} \\ $$$$\Rightarrow\frac{\mathrm{12}}{\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}}\:+\:\frac{\mathrm{18}}{\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{9}}{\mathrm{2}}}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{36}}{\mathrm{6}}}\:\:=\:\mathrm{23}.\mathrm{62} \\ $$$${how}\:{you}\:{claim}\:\mathrm{23}.\mathrm{62}\:=\:\mathrm{18}\:?? \\ $$
Answered by iloveisrael last updated on 16/May/21
$$\:{We}\:{know}\:{that}\:{the}\:{three}\:{terms} \\ $$$$\:{in}\:{the}\:{sum}\:{have}\:{fixed}\:{product} \\ $$$$\:\mathrm{12}×\mathrm{18}\:=\:\mathrm{216}\:.\:{The}\:{sum}\:{is}\:{therefore} \\ $$$$\:{a}\:{minimum}\:{if}\:{we}\:{can}\:{find}\:{x}\:\&{y} \\ $$$${satisfy}\:\frac{\mathrm{12}}{{x}}\:=\:\frac{\mathrm{18}}{{y}}\:=\:{xy}\:.\:{Since}\:{the} \\ $$$${product}\:{is}\:\mathrm{6}^{\mathrm{3}} \:{each}\:{of}\:\frac{\mathrm{12}}{{x}}\:,\:\frac{\mathrm{18}}{{y}}\:\&\:{xy}\: \\ $$$${must}\:{equal}\:\mathrm{6}\:,\:{hence}\:{the}\:{required}\: \\ $$$${minimum}\:{is}\:\mathrm{6}+\mathrm{6}+\mathrm{6}\:=\:\mathrm{18}\:, \\ $$$${occurring}\:{iff}\:{x}=\mathrm{2}\:\&{y}\:=\:\mathrm{3}.\: \\ $$
Answered by EDWIN88 last updated on 16/May/21
$$\:\mathrm{z}\:=\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{12x}^{−\mathrm{1}} +\mathrm{18y}^{−\mathrm{1}} +\mathrm{xy} \\ $$$$\:\Rightarrow\mathrm{z}_{\mathrm{x}} \:=\:−\frac{\mathrm{12}}{\mathrm{x}^{\mathrm{2}} }\:+\mathrm{y}\:=\:\mathrm{0}\:,\:\mathrm{y}\:=\:\frac{\mathrm{12}}{\mathrm{x}^{\mathrm{2}} }\:\ldots\left(\mathrm{i}\right) \\ $$$$\Rightarrow\mathrm{z}_{\mathrm{y}} \:=\:−\frac{\mathrm{18}}{\mathrm{y}^{\mathrm{2}} }\:+\mathrm{x}\:=\:\mathrm{0},\:\mathrm{x}\:=\:\frac{\mathrm{18}}{\mathrm{y}^{\mathrm{2}} }\:\ldots\left(\mathrm{ii}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{12}}{\mathrm{18}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{y}}{\mathrm{xy}^{\mathrm{2}} }\:;\:\frac{\mathrm{2}}{\mathrm{3}}\:=\:\frac{\mathrm{x}}{\mathrm{y}}\:\mathrm{or}\:\mathrm{y}\:=\:\frac{\mathrm{3x}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3x}}{\mathrm{2}}\:=\:\frac{\mathrm{12}}{\mathrm{x}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{x}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{8}}\:=\:\mathrm{2}\:\&\:\mathrm{y}\:=\:\mathrm{3}\: \\ $$$$\mathrm{minimum}\:\mathrm{z}\:=\:\mathrm{f}\left(\mathrm{2},\mathrm{3}\right)\:=\:\mathrm{18}\:\divideontimes\: \\ $$