Menu Close

Find-the-minimum-of-12-x-18-y-xy-for-all-positive-number-x-amp-y-




Question Number 141135 by bobhans last updated on 16/May/21
       Find the minimum of         ((12)/x) + ((18)/y) + xy for all         positive number x & y .
Findtheminimumof12x+18y+xyforallpositivenumberx&y.
Answered by mitica last updated on 16/May/21
((12)/x)+((18)/y)+xy≥3((((12)/x)∙((18)/y)∙xy))^(1/3) =18  = for ((12)/x)=((18)/y)=xy⇔x=2,y=3  ⇒min=18
12x+18y+xy312x18yxy3=18=for12x=18y=xyx=2,y=3min=18
Commented by mitica last updated on 16/May/21
x=2,y=3
x=2,y=3
Commented by iloveisrael last updated on 16/May/21
x = ((4/3))^(1/3)  ; y = ((9/2))^(1/3)   ⇒((12)/( ((4/3))^(1/3) )) + ((18)/( ((9/2))^(1/3) ))+(((36)/6))^(1/3)   = 23.62  how you claim 23.62 = 18 ??
x=433;y=92312433+18923+3663=23.62howyouclaim23.62=18??
Answered by iloveisrael last updated on 16/May/21
 We know that the three terms   in the sum have fixed product   12×18 = 216 . The sum is therefore   a minimum if we can find x &y  satisfy ((12)/x) = ((18)/y) = xy . Since the  product is 6^3  each of ((12)/x) , ((18)/y) & xy   must equal 6 , hence the required   minimum is 6+6+6 = 18 ,  occurring iff x=2 &y = 3.
Weknowthatthethreetermsinthesumhavefixedproduct12×18=216.Thesumisthereforeaminimumifwecanfindx&ysatisfy12x=18y=xy.Sincetheproductis63eachof12x,18y&xymustequal6,hencetherequiredminimumis6+6+6=18,occurringiffx=2&y=3.
Answered by EDWIN88 last updated on 16/May/21
 z = f(x,y) = 12x^(−1) +18y^(−1) +xy   ⇒z_x  = −((12)/x^2 ) +y = 0 , y = ((12)/x^2 ) …(i)  ⇒z_y  = −((18)/y^2 ) +x = 0, x = ((18)/y^2 ) …(ii)  ⇒ ((12)/(18)) = ((x^2 y)/(xy^2 )) ; (2/3) = (x/y) or y = ((3x)/2)  ⇒((3x)/2) = ((12)/x^2 ) ⇒ x = (8)^(1/3)  = 2 & y = 3   minimum z = f(2,3) = 18 ⋇
z=f(x,y)=12x1+18y1+xyzx=12x2+y=0,y=12x2(i)zy=18y2+x=0,x=18y2(ii)1218=x2yxy2;23=xyory=3x23x2=12x2x=83=2&y=3minimumz=f(2,3)=18

Leave a Reply

Your email address will not be published. Required fields are marked *