Question Number 135792 by benjo_mathlover last updated on 16/Mar/21

Answered by MJS_new last updated on 16/Mar/21
![x=t+((5π)/4) leads to f(t)=((2(√2)cos^3 t +(√2)cos t −2)/(1−2cos^2 t)) this has no real zeros f′(t)=−((4(2(√2)cos^3 t +2cos^2 t −3(√2)cos t +1)sin t)/(((√2)+2cos t)^2 ((√2)−3cos t))) this has zeros sin t =0 cos t =((√2)/2) cos t =1−((√2)/2) [cos t =−1−((√2)/2) rejected] testing all of these we get min ∣f(t)∣ =−1+2(√2)](https://www.tinkutara.com/question/Q135802.png)
Answered by liberty last updated on 16/Mar/21
![set { ((sin x=a)),((cos x=b)) :} we want to minimize L=∣a+b+(a/b)+(b/a)+(1/a)+(1/b)∣ = ∣((ab(a+b)+a^2 +b^2 +a+b)/(ab))∣ where a^2 +b^2 =1. let a+b = c we have c^2 =(a+b)^2 =1+2ab so 2ab = c^2 −1. consider c=sin x+cos x=(√2) sin (x+(π/4)) so the range of c is the interval [ −(√2) ,(√2) ]. Consequently it suffices to find the minimum of L(c)=∣((c(c^2 −1)+2(c+1))/(c^2 −1))∣ L(c)=∣c+(2/(c−1))∣, for c in the interval [−(√2) ,(√2) ], taking derivative (dL/dc) = 1−(2/((c−1)^2 )) =0 we get c=1±(√2) . Testing for c=1−(√2) ⇒L=∣1−(√2) +(2/(1−(√2)−1))∣ = ∣1−(√2) −(√2) ∣=2(√2)−1 (min) for c = 1+(√2) →rejected for max value if c = (√2) we get L=∣(√2) +(2/( (√2)−1))∣ = ∣(√2)+2(√2)+2∣=3(√2)+2](https://www.tinkutara.com/question/Q135815.png)
Commented by liberty last updated on 16/Mar/21

Commented by liberty last updated on 16/Mar/21
