Menu Close

Find-the-minimum-value-of-sin-x-cos-x-tan-x-cot-x-sec-x-csc-x-for-real-numbers-x-




Question Number 135792 by benjo_mathlover last updated on 16/Mar/21
Find the minimum value  of ∣sin x+cos x+tan x+cot x+sec x+csc x∣   for real numbers x.
Findtheminimumvalueofsinx+cosx+tanx+cotx+secx+cscxforrealnumbersx.
Answered by MJS_new last updated on 16/Mar/21
x=t+((5π)/4) leads to  f(t)=((2(√2)cos^3  t +(√2)cos t −2)/(1−2cos^2  t))  this has no real zeros  f′(t)=−((4(2(√2)cos^3  t +2cos^2  t −3(√2)cos t +1)sin t)/(((√2)+2cos t)^2 ((√2)−3cos t)))  this has zeros  sin t =0  cos t =((√2)/2)  cos t =1−((√2)/2)     [cos t =−1−((√2)/2) rejected]  testing all of these we get  min ∣f(t)∣ =−1+2(√2)
x=t+5π4leadstof(t)=22cos3t+2cost212cos2tthishasnorealzerosf(t)=4(22cos3t+2cos2t32cost+1)sint(2+2cost)2(23cost)thishaszerossint=0cost=22cost=122[cost=122rejected]testingallofthesewegetminf(t)=1+22
Answered by liberty last updated on 16/Mar/21
set  { ((sin x=a)),((cos x=b)) :}  we want to minimize   L=∣a+b+(a/b)+(b/a)+(1/a)+(1/b)∣  = ∣((ab(a+b)+a^2 +b^2 +a+b)/(ab))∣  where a^2 +b^2 =1. let a+b = c  we have c^2 =(a+b)^2 =1+2ab  so 2ab = c^2 −1. consider   c=sin x+cos x=(√2) sin (x+(π/4))  so the range of c is the interval  [ −(√2) ,(√2) ]. Consequently  it suffices to find the minimum  of L(c)=∣((c(c^2 −1)+2(c+1))/(c^2 −1))∣  L(c)=∣c+(2/(c−1))∣, for c in the  interval [−(√2) ,(√2) ], taking  derivative (dL/dc) = 1−(2/((c−1)^2 )) =0  we get c=1±(√2) . Testing for  c=1−(√2) ⇒L=∣1−(√2) +(2/(1−(√2)−1))∣  = ∣1−(√2) −(√2) ∣=2(√2)−1 (min)  for c = 1+(√2) →rejected   for max value if c = (√2)  we get L=∣(√2) +(2/( (√2)−1))∣ = ∣(√2)+2(√2)+2∣=3(√2)+2
set{sinx=acosx=bwewanttominimizeL=∣a+b+ab+ba+1a+1b=ab(a+b)+a2+b2+a+babwherea2+b2=1.leta+b=cwehavec2=(a+b)2=1+2abso2ab=c21.considerc=sinx+cosx=2sin(x+π4)sotherangeofcistheinterval[2,2].ConsequentlyitsufficestofindtheminimumofL(c)=∣c(c21)+2(c+1)c21L(c)=∣c+2c1,forcintheinterval[2,2],takingderivativedLdc=12(c1)2=0wegetc=1±2.Testingforc=12L=∣12+2121=122∣=221(min)forc=1+2rejectedformaxvalueifc=2wegetL=∣2+221=2+22+2∣=32+2
Commented by liberty last updated on 16/Mar/21
Commented by liberty last updated on 16/Mar/21

Leave a Reply

Your email address will not be published. Required fields are marked *