Menu Close

Find-the-number-of-terms-in-1-x-101-1-x-2-x-100-




Question Number 855 by 112358 last updated on 26/Mar/15
Find the number of terms in  (1+x)^(101) (1+x^2 −x)^(100) .
Findthenumberoftermsin(1+x)101(1+x2x)100.
Answered by prakash jain last updated on 26/Mar/15
=[(1+x)(1+x^2 −x)]^(100) (1+x)  =[1+x^2 −x+x+x^3 −x^2 ]^(100) (1+x)  =[1+x^3 ]^(100) (1+x)=(1+x^3 )^(100) +x(1+x^3 )^(300)   (1+x^3 )^(100) =Σ_(i=0) ^(100) ^(100) C_i  x^(3i)    (101 terms)   ...(i)  x(1+x^3 )^(100) =Σ_(i=0) ^(100) ^(100) C_i  x^(3i+1)    (101 terms)   ...(ii)  Total number of terms =202 since no  common terms in (i) and (ii).
=[(1+x)(1+x2x)]100(1+x)=[1+x2x+x+x3x2]100(1+x)=[1+x3]100(1+x)=(1+x3)100+x(1+x3)300(1+x3)100=100i=0100Cix3i(101terms)(i)x(1+x3)100=100i=0100Cix3i+1(101terms)(ii)Totalnumberofterms=202sincenocommontermsin(i)and(ii).

Leave a Reply

Your email address will not be published. Required fields are marked *