Menu Close

find-the-partial-sums-of-n-1-1-n-2-n-1-




Question Number 143131 by mohammad17 last updated on 10/Jun/21
find the partial sums of Σ_(n=1) ^∞ (1/(n^2 (n+1)))
findthepartialsumsofn=11n2(n+1)
Answered by qaz last updated on 10/Jun/21
Σ_(n=1) ^∞ (1/(n^2 (n+1)))  =∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^2 )dx  =∫_0 ^1 Li_2 (x)dx  =xLi_2 (x)∣_0 ^1 +∫_0 ^1 ((xln(1−x))/x)dx  =(π^2 /6)+∫_0 ^1 ln(1−x)dx  =(π^2 /6)−1
n=11n2(n+1)=01n=1xnn2dx=01Li2(x)dx=xLi2(x)01+01xln(1x)xdx=π26+01ln(1x)dx=π261
Commented by mohammad17 last updated on 11/Jun/21
thank you sir but why the interval of the  integral from(0 to 1)
thankyousirbutwhytheintervaloftheintegralfrom(0to1)
Answered by Olaf_Thorendsen last updated on 10/Jun/21
S = Σ_(n=1) ^∞ (1/(n^2 (n+1)))  S = Σ_(n=1) ^∞ ((1/n^2 )−(1/n)+(1/(n+1)))  S = Σ_(n=1) ^∞ (1/n^2 )−Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))  S = (π^2 /6)−1
S=n=11n2(n+1)S=n=1(1n21n+1n+1)S=n=11n2n=1(1n1n+1)S=π261

Leave a Reply

Your email address will not be published. Required fields are marked *