Menu Close

Find-the-period-of-f-x-where-f-x-cos-2x-pi-3-sin-3x-2-pi-4-How-may-one-find-the-period-of-the-following-functions-if-x-has-period-m-and-x-has-period-n-1-f-1-x-x-x-2-f-2-x




Question Number 1812 by 112358 last updated on 04/Oct/15
Find the period of f(x) where  f(x)=cos(2x+(π/3))+sin(((3x)/2)−(π/4)).  How may one find the period  of the following functions  if ψ(x) has period m and γ(x)  has period n?  (1) f_1 (x)=ψ(x)γ(x)  (2) f_2 (x)=((ψ(x))/(γ(x)))     {γ(x)≠0}  (3) f_3 (x)={ψ(x)}^(γ(x))   (4) f_4 (x)=log_(ψ(x)) γ(x)  (5) f_5 (x)=ψ(x)±γ(x)  (6) f_6 (x)=cos(ψ(x)γ(x))
$${Find}\:{the}\:{period}\:{of}\:{f}\left({x}\right)\:{where} \\ $$$${f}\left({x}\right)={cos}\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{3}{x}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\right). \\ $$$${How}\:{may}\:{one}\:{find}\:{the}\:{period} \\ $$$${of}\:{the}\:{following}\:{functions} \\ $$$${if}\:\psi\left({x}\right)\:{has}\:{period}\:{m}\:{and}\:\gamma\left({x}\right) \\ $$$${has}\:{period}\:{n}? \\ $$$$\left(\mathrm{1}\right)\:{f}_{\mathrm{1}} \left({x}\right)=\psi\left({x}\right)\gamma\left({x}\right) \\ $$$$\left(\mathrm{2}\right)\:{f}_{\mathrm{2}} \left({x}\right)=\frac{\psi\left({x}\right)}{\gamma\left({x}\right)}\:\:\:\:\:\left\{\gamma\left({x}\right)\neq\mathrm{0}\right\} \\ $$$$\left(\mathrm{3}\right)\:{f}_{\mathrm{3}} \left({x}\right)=\left\{\psi\left({x}\right)\right\}^{\gamma\left({x}\right)} \\ $$$$\left(\mathrm{4}\right)\:{f}_{\mathrm{4}} \left({x}\right)={log}_{\psi\left({x}\right)} \gamma\left({x}\right) \\ $$$$\left(\mathrm{5}\right)\:{f}_{\mathrm{5}} \left({x}\right)=\psi\left({x}\right)\pm\gamma\left({x}\right) \\ $$$$\left(\mathrm{6}\right)\:{f}_{\mathrm{6}} \left({x}\right)={cos}\left(\psi\left({x}\right)\gamma\left({x}\right)\right) \\ $$$$ \\ $$
Answered by 123456 last updated on 06/Oct/15
∃(s,t)∈Z^2 ,sm=tn  (1),(2) and (5) would have period lcm(m,n)
$$\exists\left({s},{t}\right)\in\mathbb{Z}^{\mathrm{2}} ,{sm}={tn} \\ $$$$\left(\mathrm{1}\right),\left(\mathrm{2}\right)\:{and}\:\left(\mathrm{5}\right)\:{would}\:{have}\:{period}\:{lcm}\left({m},{n}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *