Menu Close

Find-the-point-on-the-paraboloid-z-x-2-y-2-which-is-closest-to-the-point-3-6-4-




Question Number 132853 by EDWIN88 last updated on 17/Feb/21
Find the point on the paraboloid   z = x^2 +y^2  which is closest to the point   (3,−6,4 )
Findthepointontheparaboloidz=x2+y2whichisclosesttothepoint(3,6,4)
Answered by MJS_new last updated on 17/Feb/21
y=−2x [horizontal sections are circles]   ((x),(y),((x^2 +y^2 )) ) = ((x),((−2x)),((5x^2 )) )  ∣ ((x),((−2x)),((5x^2 )) ) − ((3),((−6)),(4) ) ∣=(√(25x^4 −35x^2 −30x+62))  (d/dx)[(√(25x^4 −35x^2 −30x+62))]=0  ((5(10x^3 −7x−3))/( (√(25x^4 −35x^2 −30x+62))))=0  ((5(x−1)(10x^2 +10x+3))/( (√(25x^4 −35x^2 −30x+62))))=0  x=1  ⇒ y=−2∧z=5  minimum distance is (√(21))
y=2x[horizontalsectionsarecircles](xyx2+y2)=(x2x5x2)(x2x5x2)(364)∣=25x435x230x+62ddx[25x435x230x+62]=05(10x37x3)25x435x230x+62=05(x1)(10x2+10x+3)25x435x230x+62=0x=1y=2z=5minimumdistanceis21

Leave a Reply

Your email address will not be published. Required fields are marked *