Question Number 140288 by liberty last updated on 06/May/21
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\left(\mathrm{s}\right)\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\mathrm{of}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{10xy}+\mathrm{3y}^{\mathrm{2}} =\mathrm{9}\:\mathrm{closest}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{origin} \\ $$
Answered by mr W last updated on 06/May/21
$${with}\:{y}={x}: \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{10}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{16}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$${x}=\pm\frac{\mathrm{3}}{\mathrm{4}}\:\Rightarrow{y}=\pm\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${with}\:{y}=−{x}: \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$−{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$${point}\:\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{4}}\right)\:{and}\:\left(−\frac{\mathrm{3}}{\mathrm{4}},−\frac{\mathrm{3}}{\mathrm{4}}\right)\:{are} \\ $$$${closest}\:{to}\:{origin}. \\ $$
Commented by liberty last updated on 06/May/21
$$\mathrm{why}\:\mathrm{y}=\mathrm{x}\:?\: \\ $$
Commented by mr W last updated on 06/May/21
$${symmetry}\:{of}\:{hyperbola} \\ $$
Commented by liberty last updated on 06/May/21
Commented by liberty last updated on 06/May/21
$$\mathrm{oo}\:\mathrm{do}\:\mathrm{you}\:\mathrm{meant}\:\mathrm{like}\:\mathrm{this} \\ $$
Commented by mr W last updated on 06/May/21
$${yes} \\ $$
Answered by liberty last updated on 06/May/21
$$\mathrm{let}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{curve}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{10xy}+\mathrm{3y}^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{origin}.\:\mathrm{square}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\:\mathrm{u}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:.\:\mathrm{by}\:\mathrm{implicit}\:\mathrm{diff} \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{du}}{\mathrm{dx}}\:=\:\mathrm{2x}+\:\mathrm{2y}\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{from}\:\mathrm{the}\:\mathrm{second}\:\mathrm{eq}\: \\ $$$$\:\mathrm{6x}\:+\:\mathrm{10y}\:+\mathrm{10x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{6y}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=−\frac{\mathrm{3x}+\mathrm{5y}}{\mathrm{5x}+\mathrm{3y}} \\ $$$$\mathrm{substitute}\:\mathrm{to}\:\mathrm{eq}\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{du}}{\mathrm{dx}}\:=\:\mathrm{2x}−\mathrm{2y}\left(\frac{\mathrm{3x}+\mathrm{5y}}{\mathrm{5x}+\mathrm{3y}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} ;\:\mathrm{x}\:=\:\pm\:\mathrm{y} \\ $$$$\mathrm{substituting}\:\mathrm{in}\:\mathrm{the}\:\mathrm{eq}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{graph}\:\mathrm{16x}^{\mathrm{2}} =\mathrm{9}\:\rightarrow\begin{cases}{\mathrm{x}=\pm\frac{\mathrm{3}}{\mathrm{4}}}\\{\mathrm{y}=\pm\:\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$
Commented by lyubita last updated on 06/May/21
$${tepebea} \\ $$