Menu Close

find-the-polynom-T-n-wich-verify-T-n-cos-cos-n-n-integr-real-1-find-T-0-T-1-and-T-2-and-prove-that-T-n-2-2x-T-n-1-T-n-3-find-deg-T-n-and-T-n-1-T-n-1-4-find-T-cos-for




Question Number 73227 by mathmax by abdo last updated on 08/Nov/19
find the polynom T_n  wich verify T_n (cosθ)=cos(nθ)  ∀n integr ∀θ real  1) find T_0 ,T_1 and T_2 and prove that   T_(n+2) =2x T_(n+1) −T_n   3) find deg(T_n ) and T_n (1) ,T_n (−1)  4) find T^′ (cosθ) for 0<θ<π  and prove that  (1−x^2 )T_n ′′−xT′_n  +n^2  T_n =0  5) find roots of T_n  and decompose T_n inside R[x]  6) find the value of Π_(k=0) ^(n−1) cos((((2k+1)π)/(2n)))
findthepolynomTnwichverifyTn(cosθ)=cos(nθ)nintegrθreal1)findT0,T1andT2andprovethatTn+2=2xTn+1Tn3)finddeg(Tn)andTn(1),Tn(1)4)findT(cosθ)for0<θ<πandprovethat(1x2)TnxTn+n2Tn=05)findrootsofTnanddecomposeTninsideR[x]6)findthevalueofk=0n1cos((2k+1)π2n)
Answered by mind is power last updated on 08/Nov/19
T_0 (cos(θ))=cos(0)=1⇒T_0 =1  T_1 (cos(θ))=cos(θ)⇒T_1 =xsin(  T_2 (cos(θ))=cos(2θ)=2cos^2 (θ)−1⇒T_2 =2x^2 −1  T_(n+2) {cos(θ)}=cos(n+2)θ=cos(θ)cos(n+1)θ−sin(θ)sin(n+1)θ  =2cos(θ)cos(n+1)θ −{cos(θ)cos(n+1)θ+sin(θ)sin(n+1)θ}  =2cos(θ)cos(n+1)θ−cos(nθ)  ⇒2cos(θ)T_(n+1) (cosθ)−T_n (cos(θ))=T_(n+1) (cos(θ))  ⇒T_(n+1) =2xT_(n+1) −T_n   deg(T_n )=n   by recursion deg(T_0 )=deg(1)=0 true  suppose for all n≥2 deg(T_n )=n  T_(n+1) =2xT_n −T_(n−1) ⇒deg(T_(n+1) )= deg(T_n )+1=n+1  T_n (1)=T_n (cos(0))=cos(0)=1  T_n (−1)=T_n (cos(π))=cos(nπ)=(−1)^n   T_n ′(cos(θ))=  T_n (cos(θ))=cos(nθ)⇒−sin(θ)Γ′(cos(θ))=−nsin(nθ)  ⇒Γ′(cos(θ))=((nsin(nθ))/(sin(θ)))  ⇒sin(θ)Γ_n ′(cos(θ))=nsin(nθ)  ⇒cos(θ)Γ′_n (cos(θ))−sin^2 T_n ′′(cos(θ))=n^2 cos(nθ)  ⇒cos(θ)Γ_n ′(cos(θ))−(1−cos^2 (θ))T′′(cos(θ))=n^2 T_n (cos(θ))  ⇔(1−cos^2 (θ))T′′_n −cos(θ)T′(cos(θ))+n^2 T_n (cos(θ))=0  ⇒(1−x^2 )Γ′′−xT^′ +n^2 T=0  since T_n is a polonomial of degres n he hase n roots over C  lets finde roots in [−1,1]⇒∃θ∈[0,2π]  x=cos(θ)  ⇒T_n (cos(θ))=cos(nθ)=0  ⇒nθ=(π/2)+kπ⇒θ=(π/(2n))+((kπ)/n),k∈[0,n−1]  ∀k,j∈[0,n−1[   k≠j⇒cos((((2k+1)π)/(2n)))≠cos((((2j+1)π)/(2n)))⇒  we get n different root  witch are X_k =cos((((2k+1)π)/(2n))),k∈[0,....n−1]  T_n =aΠ_(k=1) ^n (x−cos((((2k+1)π)/(2n)))  a coeficient of x^n   T_1 =x⇒a_1 =1  T_2 =2x^2 −1⇒a_2 =2,T_(n+1) =2xT_n −T_(n−1)   ⇒a_(n+1) =2a_n ⇒a_n =a_1 .2^(n−1) =2^(n−1)  ,n≥1  T_n = { ((1 if n=0)),((2^(n−1) Π_(k=0) ^(n−1) (x−cos((((2k+1)π)/(2n)))))) :} ifn≥1  if we put x=0  ⇒T_n (0)=1=2^(n−1) Π_(k=0) ^(n−1) (−cos(((2k+1)/(2n))π))=(−1)^n 2^(n−1) Π_(k=0) ^(n−1) (cos(((2k+1)/n)π)=T_n (0)  T_n (0)=cos(((nπ)/2))=    ⇒Π_(k=0) ^(n−1) (cos(((2k+1)/(2n))π)=(((−1)^n cos(((nπ)/2)))/2^(n−1) )
T0(cos(θ))=cos(0)=1T0=1T1(cos(θ))=cos(θ)T1=xsin(T2(cos(θ))=cos(2θ)=2cos2(θ)1T2=2x21Tn+2{cos(θ)}=cos(n+2)θ=cos(θ)cos(n+1)θsin(θ)sin(n+1)θ=2cos(θ)cos(n+1)θ{cos(θ)cos(n+1)θ+sin(θ)sin(n+1)θ}=2cos(θ)cos(n+1)θcos(nθ)2cos(θ)Tn+1(cosθ)Tn(cos(θ))=Tn+1(cos(θ))Tn+1=2xTn+1Tndeg(Tn)=nbyrecursiondeg(T0)=deg(1)=0truesupposeforalln2deg(Tn)=nTn+1=2xTnTn1deg(Tn+1)=deg(Tn)+1=n+1Tn(1)=Tn(cos(0))=cos(0)=1Tn(1)=Tn(cos(π))=cos(nπ)=(1)nTn(cos(θ))=Tn(cos(θ))=cos(nθ)sin(θ)Γ(cos(θ))=nsin(nθ)Γ(cos(θ))=nsin(nθ)sin(θ)sin(θ)Γn(cos(θ))=nsin(nθ)cos(θ)Γn(cos(θ))sin2Tn(cos(θ))=n2cos(nθ)cos(θ)Γn(cos(θ))(1cos2(θ))T(cos(θ))=n2Tn(cos(θ))(1cos2(θ))Tncos(θ)T(cos(θ))+n2Tn(cos(θ))=0(1x2)ΓxT+n2T=0sinceTnisapolonomialofdegresnhehasenrootsoverCletsfinderootsin[1,1]θ[0,2π]x=cos(θ)Tn(cos(θ))=cos(nθ)=0nθ=π2+kπθ=π2n+kπn,k[0,n1]k,j[0,n1[kjcos((2k+1)π2n)cos((2j+1)π2n)wegetndifferentrootwitchareXk=cos((2k+1)π2n),k[0,.n1]Tn=ank=1(xcos((2k+1)π2n)acoeficientofxnT1=xa1=1T2=2x21a2=2,Tn+1=2xTnTn1an+1=2anan=a1.2n1=2n1,n1Tn={1ifn=02n1n1k=0(xcos((2k+1)π2n))ifn1ifweputx=0Tn(0)=1=2n1k=0n1(cos(2k+12nπ))=(1)n2n1n1k=0(cos(2k+1nπ)=Tn(0)Tn(0)=cos(nπ2)=n1k=0(cos(2k+12nπ)=(1)ncos(nπ2)2n1
Commented by mathmax by abdo last updated on 08/Nov/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 10/Nov/19
y′re welcom
yrewelcom
Commented by ajfour last updated on 10/Nov/19
i can barely follow these, but  great solution, you r a great solver  Sir.
icanbarelyfollowthese,butgreatsolution,youragreatsolverSir.
Commented by mind is power last updated on 10/Nov/19
thanx  sir i try to explain most of my worck
thanxsiritrytoexplainmostofmyworck

Leave a Reply

Your email address will not be published. Required fields are marked *