Question Number 73227 by mathmax by abdo last updated on 08/Nov/19
![find the polynom T_n wich verify T_n (cosθ)=cos(nθ) ∀n integr ∀θ real 1) find T_0 ,T_1 and T_2 and prove that T_(n+2) =2x T_(n+1) −T_n 3) find deg(T_n ) and T_n (1) ,T_n (−1) 4) find T^′ (cosθ) for 0<θ<π and prove that (1−x^2 )T_n ′′−xT′_n +n^2 T_n =0 5) find roots of T_n and decompose T_n inside R[x] 6) find the value of Π_(k=0) ^(n−1) cos((((2k+1)π)/(2n)))](https://www.tinkutara.com/question/Q73227.png)
Answered by mind is power last updated on 08/Nov/19
![T_0 (cos(θ))=cos(0)=1⇒T_0 =1 T_1 (cos(θ))=cos(θ)⇒T_1 =xsin( T_2 (cos(θ))=cos(2θ)=2cos^2 (θ)−1⇒T_2 =2x^2 −1 T_(n+2) {cos(θ)}=cos(n+2)θ=cos(θ)cos(n+1)θ−sin(θ)sin(n+1)θ =2cos(θ)cos(n+1)θ −{cos(θ)cos(n+1)θ+sin(θ)sin(n+1)θ} =2cos(θ)cos(n+1)θ−cos(nθ) ⇒2cos(θ)T_(n+1) (cosθ)−T_n (cos(θ))=T_(n+1) (cos(θ)) ⇒T_(n+1) =2xT_(n+1) −T_n deg(T_n )=n by recursion deg(T_0 )=deg(1)=0 true suppose for all n≥2 deg(T_n )=n T_(n+1) =2xT_n −T_(n−1) ⇒deg(T_(n+1) )= deg(T_n )+1=n+1 T_n (1)=T_n (cos(0))=cos(0)=1 T_n (−1)=T_n (cos(π))=cos(nπ)=(−1)^n T_n ′(cos(θ))= T_n (cos(θ))=cos(nθ)⇒−sin(θ)Γ′(cos(θ))=−nsin(nθ) ⇒Γ′(cos(θ))=((nsin(nθ))/(sin(θ))) ⇒sin(θ)Γ_n ′(cos(θ))=nsin(nθ) ⇒cos(θ)Γ′_n (cos(θ))−sin^2 T_n ′′(cos(θ))=n^2 cos(nθ) ⇒cos(θ)Γ_n ′(cos(θ))−(1−cos^2 (θ))T′′(cos(θ))=n^2 T_n (cos(θ)) ⇔(1−cos^2 (θ))T′′_n −cos(θ)T′(cos(θ))+n^2 T_n (cos(θ))=0 ⇒(1−x^2 )Γ′′−xT^′ +n^2 T=0 since T_n is a polonomial of degres n he hase n roots over C lets finde roots in [−1,1]⇒∃θ∈[0,2π] x=cos(θ) ⇒T_n (cos(θ))=cos(nθ)=0 ⇒nθ=(π/2)+kπ⇒θ=(π/(2n))+((kπ)/n),k∈[0,n−1] ∀k,j∈[0,n−1[ k≠j⇒cos((((2k+1)π)/(2n)))≠cos((((2j+1)π)/(2n)))⇒ we get n different root witch are X_k =cos((((2k+1)π)/(2n))),k∈[0,....n−1] T_n =aΠ_(k=1) ^n (x−cos((((2k+1)π)/(2n))) a coeficient of x^n T_1 =x⇒a_1 =1 T_2 =2x^2 −1⇒a_2 =2,T_(n+1) =2xT_n −T_(n−1) ⇒a_(n+1) =2a_n ⇒a_n =a_1 .2^(n−1) =2^(n−1) ,n≥1 T_n = { ((1 if n=0)),((2^(n−1) Π_(k=0) ^(n−1) (x−cos((((2k+1)π)/(2n)))))) :} ifn≥1 if we put x=0 ⇒T_n (0)=1=2^(n−1) Π_(k=0) ^(n−1) (−cos(((2k+1)/(2n))π))=(−1)^n 2^(n−1) Π_(k=0) ^(n−1) (cos(((2k+1)/n)π)=T_n (0) T_n (0)=cos(((nπ)/2))= ⇒Π_(k=0) ^(n−1) (cos(((2k+1)/(2n))π)=(((−1)^n cos(((nπ)/2)))/2^(n−1) )](https://www.tinkutara.com/question/Q73233.png)
Commented by mathmax by abdo last updated on 08/Nov/19

Commented by mind is power last updated on 10/Nov/19

Commented by ajfour last updated on 10/Nov/19

Commented by mind is power last updated on 10/Nov/19
