Menu Close

find-the-range-algrbraically-f-x-x-2-1-




Question Number 70659 by aliesam last updated on 06/Oct/19
find the range algrbraically    f(x)=(√(x^2 −1))
findtherangealgrbraicallyf(x)=x21
Answered by MJS last updated on 06/Oct/19
(√(x^2 −1))∈R ⇒ x^2 ≥1 ⇒ x≤−1 ∨ x≥1 ⇒  ⇒ D={x∈R∣1≤∣x∣}  (df/dx)=(x/( (√(x^2 −1))))=0 ⇒ no solution for x∈D  −1<x ⇒ (x/( (√(x^2 −1))))<0 ⇒ minimum at the border x=−1  x>1 ⇒ (x/( (√(x^2 −1))))>0 ⇒ minimum at the border x=1  ⇒ range: 0≤f(x)<+∞
x21Rx21x1x1D={xR1⩽∣x}dfdx=xx21=0nosolutionforxD1<xxx21<0minimumattheborderx=1x>1xx21>0minimumattheborderx=1range:0f(x)<+

Leave a Reply

Your email address will not be published. Required fields are marked *