Menu Close

Find-the-range-and-domain-of-y-x-1-x-2-3x-10-x-2-6x-8-




Question Number 5235 by sanusihammed last updated on 02/May/16
Find the range and domain of   y = (((x+1)(x^2 +3x−10))/(x^2 +6x+8))
Findtherangeanddomainofy=(x+1)(x2+3x10)x2+6x+8
Answered by Yozzii last updated on 02/May/16
x^2 +6x+8=(x+3)^2 −1.  If x^2 +6x+8=0  ⇒(x+3)^2 −1=0  ⇒x+3=±1  x=−3±1⇒x=−2,−4.    ((x^2 +6x+8−3x−18)/(x^2 +6x+8))=1−((3x+18)/(x^2 +6x+8))  ⇒y=(x+1)(1−((3x+18)/(x^2 +6x+8)))  y=x+1−(((x+1)(3x+18))/(x^2 +6x+8))  (x+1)(3x+18)=3x^2 +21x+18  ((3x^2 +21x+18)/(x^2 +6x+8))=((3(x^2 +6x+8−2+x))/(x^2 +6x+8))  =3+((3x−6)/(x^2 +6x+8))  ∴ y=x−2−((3x−6)/(x^2 +6x+8))  y=x−2−((3−(6/x))/(x+6+(8/x)))  ⇒lim_(x→∞) y=lim_(x→∞) (x−2−((3−6x^(−1) )/(x+6+(8/x))))=∞−2−((3−(6/∞))/(∞+6+(8/∞)))=∞−((3−0)/(∞+9))=∞ (limit does not exist)  Also, lim_(x→−∞) y=−∞.   It is said that y=x−2  is an oblique  asymptote to the curve y=f(x).  x=−2 and x=−4 are vertical asymptotes.  ∴ domain(y)=D_y ={x∈R∣x≠−2,−4}  range(y)=Im(y)=R.
x2+6x+8=(x+3)21.Ifx2+6x+8=0(x+3)21=0x+3=±1x=3±1x=2,4.x2+6x+83x18x2+6x+8=13x+18x2+6x+8y=(x+1)(13x+18x2+6x+8)y=x+1(x+1)(3x+18)x2+6x+8(x+1)(3x+18)=3x2+21x+183x2+21x+18x2+6x+8=3(x2+6x+82+x)x2+6x+8=3+3x6x2+6x+8y=x23x6x2+6x+8y=x236xx+6+8xlimxy=limx(x236x1x+6+8x)=236+6+8=30+9=(limitdoesnotexist)Also,limxy=.Itissaidthaty=x2isanobliqueasymptotetothecurvey=f(x).x=2andx=4areverticalasymptotes.domain(y)=Dy={xRx2,4}range(y)=Im(y)=R.

Leave a Reply

Your email address will not be published. Required fields are marked *