Menu Close

Find-the-range-of-real-number-of-q-such-that-the-function-f-x-cos-x-q-sin-2-x-5-have-minimum-value-is-5-




Question Number 141412 by bramlexs22 last updated on 18/May/21
 Find the range of real number  of q such that the function    f(x) = cos x(q sin^2 x−5) have  minimum value is −5 .
Findtherangeofrealnumberofqsuchthatthefunctionf(x)=cosx(qsin2x5)haveminimumvalueis5.
Commented by MJS_new last updated on 18/May/21
I get −(5/2)≤q≤20 but I′ve got no time to type  the path right now
Iget52q20butIvegotnotimetotypethepathrightnow
Commented by bramlexs22 last updated on 18/May/21
how sir ?
howsir?
Answered by MJS_new last updated on 18/May/21
f(x)=(q−5−qcos^2  x)cos x  f ′(x)=(5−q+3qcos^2  x)sin x =0    sin x =0 ⇒ x=nπ  f(nπ)=±5    5−q−qcos^2  x =0 ⇒ cos^2  x =((q−5)/(3q)) ⇒  ⇒ x=±arccos ((√(q−5))/( (√(3q))))  f(±arccos ((√(q−5))/( (√(3q)))))=±((2(√(3(q−5)^3 )))/(9(√q)))  −((2(√(3(q−5)^3 )))/(9(√q)))=−5 ⇒ q=20  +((2(√(3(q−5)^3 )))/(9(√q)))=−5 ⇒ q=−(5/2)  this might be wrong but it′s what I did
f(x)=(q5qcos2x)cosxf(x)=(5q+3qcos2x)sinx=0sinx=0x=nπf(nπ)=±55qqcos2x=0cos2x=q53qx=±arccosq53qf(±arccosq53q)=±23(q5)39q23(q5)39q=5q=20+23(q5)39q=5q=52thismightbewrongbutitswhatIdid
Commented by bramlexs22 last updated on 19/May/21
f ′(x)=−sin x(q−5−q cos^2 x)+                  cos x(2q cos x sin x)=0  ⇒sin x [ q−5−qcos^2 x−2q cos^2 x ]=0
f(x)=sinx(q5qcos2x)+cosx(2qcosxsinx)=0sinx[q5qcos2x2qcos2x]=0

Leave a Reply

Your email address will not be published. Required fields are marked *