Menu Close

find-the-real-values-of-x-for-which-the-function-f-x-x-2-x-2-3x-2-




Question Number 12495 by shardon last updated on 23/Apr/17
find the real values of x for which  the function f(x)=(x^2 /(x^2 +3x+2))
$${find}\:{the}\:{real}\:{values}\:{of}\:{x}\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$$ \\ $$
Commented by mrW1 last updated on 23/Apr/17
the question is not complete!
$${the}\:{question}\:{is}\:{not}\:{complete}! \\ $$
Commented by shardon last updated on 23/Apr/17
yes it does
$${yes}\:{it}\:{does} \\ $$
Commented by mrW1 last updated on 23/Apr/17
what is your question then?
$${what}\:{is}\:{your}\:{question}\:{then}? \\ $$
Answered by FilupS last updated on 24/Apr/17
f(x)=(x^2 /(x^2 +3x+2))  x∈R     x^2 +3x+2≠0   ⇒   x≠−2, −1     ∀x∈R\{−2, −1}⇒f∈R
$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$${x}\in\mathbb{R} \\ $$$$\: \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}\neq\mathrm{0}\:\:\:\Rightarrow\:\:\:{x}\neq−\mathrm{2},\:−\mathrm{1} \\ $$$$\: \\ $$$$\forall{x}\in\mathbb{R}\backslash\left\{−\mathrm{2},\:−\mathrm{1}\right\}\Rightarrow{f}\in\mathbb{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *