find-the-region-in-which-the-function-f-z-log-z-2i-z-2-1-is-analytic-help-me-sir- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 138628 by mohammad17 last updated on 15/Apr/21 findtheregioninwhichthefunctionf(z)=log(z−2i)z2+1isanalytic?helpmesir Commented by mohammad17 last updated on 16/Apr/21 ????? Answered by mathmax by abdo last updated on 17/Apr/21 letz=x+iy⇒f(z)=f(x+iy)=u(x,y)+iv(x,y)f(x+iy)=log(x+iy−2i)(x+iy)2+1=log(x+i(y−2))x2+2ixy−y2+1=log(x2+(y−2)2eiarctan(y−2x))x2−y2+1+2ixy=12log(x2+(y−2)2)x2−y2+1+2ixy+iarctan(y−2x)x2−y2+1+2ixy=log(x2+(y−2)2)(x2−y2+1−2ixy)(x2−y2+1)2+4x2y2+iarctan(y−2x)(x2−y2+1−2ixy)(x2−y2+1)2+4x2y2=(x2−y2+1)log(x2+(y−2)2)(x2−y2+1)2+4x2y2−2ixylog(x2+(y−2)2)(x2−y2+1)2+4x2y2+i(x2−y2+1)arctan(y−2x)(x2−y2+1)2+4x2y2+2xyarctan(y−2)x)(x2−y2+1)2+4x2y2⇒u(x,y)=(x2−y2+1)log(x2+(y−2)2)+2xyarctan(y−2x)(x2−y2+1)2+4x2y2andv(x,y)=(x2−y2+1)arctan(y−2x)−2xylog(x2+(y−2)2)(x2−y2+1)2+4x2y2afterweapplycauchyconditions∂u∂x=∂v∂yand∂u∂y=−∂v∂x….. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-73090Next Next post: Question-138643 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.