Menu Close

find-the-region-in-which-the-function-f-z-log-z-2i-z-2-1-is-analytic-help-me-sir-




Question Number 138628 by mohammad17 last updated on 15/Apr/21
find the region in which the function     f(z)=((log(z−2i))/(z^2 +1)) is analytic ?    help me sir
findtheregioninwhichthefunctionf(z)=log(z2i)z2+1isanalytic?helpmesir
Commented by mohammad17 last updated on 16/Apr/21
?????
?????
Answered by mathmax by abdo last updated on 17/Apr/21
let z=x+iy ⇒f(z)=f(x+iy) =u(x,y)+iv(x,y)  f(x+iy)=((log(x+iy−2i))/((x+iy)^2  +1)) =((log(x+i(y−2)))/(x^2  +2ixy−y^2  +1))  =((log((√(x^2 +(y−2)^2 ))e^(iarctan(((y−2)/x))) ))/(x^2 −y^2  +1+2ixy)) =(1/2)((log(x^2  +(y−2)^2 ))/(x^2 −y^2  +1 +2ixy))  +((iarctan(((y−2)/x)))/(x^2 −y^2  +1+2ixy))  =((log(x^2  +(y−2)^2 )(x^2 −y^2  +1−2ixy))/((x^2 −y^2 +1)^2  +4x^2 y^2 ))  +i ((arctan(((y−2)/x))(x^2 −y^2  +1−2ixy))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  =(((x^2 −y^2 +1)log(x^2  +(y−2)^2 ))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))−2i((xylog(x^2  +(y−2)^2 ))/((x^2 −y^2 +1)^2  +4x^2 y^2 ))  +i(((x^2 −y^2 +1)arctan(((y−2)/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 )) +((2xyarctan(((y−2))/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  ⇒u(x,y)=(((x^2 −y^2 +1)log(x^2  +(y−2)^2 )+2xyarctan(((y−2)/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  and v(x,y)=(((x^2 −y^2 +1)arctan(((y−2)/x))−2xylog(x^2  +(y−2)^2 ))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  after we apply cauchy conditions (∂u/∂x)=(∂v/∂y) and (∂u/∂y)=−(∂v/∂x)  .....
letz=x+iyf(z)=f(x+iy)=u(x,y)+iv(x,y)f(x+iy)=log(x+iy2i)(x+iy)2+1=log(x+i(y2))x2+2ixyy2+1=log(x2+(y2)2eiarctan(y2x))x2y2+1+2ixy=12log(x2+(y2)2)x2y2+1+2ixy+iarctan(y2x)x2y2+1+2ixy=log(x2+(y2)2)(x2y2+12ixy)(x2y2+1)2+4x2y2+iarctan(y2x)(x2y2+12ixy)(x2y2+1)2+4x2y2=(x2y2+1)log(x2+(y2)2)(x2y2+1)2+4x2y22ixylog(x2+(y2)2)(x2y2+1)2+4x2y2+i(x2y2+1)arctan(y2x)(x2y2+1)2+4x2y2+2xyarctan(y2)x)(x2y2+1)2+4x2y2u(x,y)=(x2y2+1)log(x2+(y2)2)+2xyarctan(y2x)(x2y2+1)2+4x2y2andv(x,y)=(x2y2+1)arctan(y2x)2xylog(x2+(y2)2)(x2y2+1)2+4x2y2afterweapplycauchyconditionsux=vyanduy=vx..

Leave a Reply

Your email address will not be published. Required fields are marked *