Menu Close

find-the-roots-of-P-x-1-ix-jx-2-n-1-with-j-e-i-2pi-3-then-factorize-P-x-inside-C-x-decompose-the-fraction-F-1-P-




Question Number 73485 by abdomathmax last updated on 13/Nov/19
find the roots of P(x)=(1+ix +jx^2 )^n −1  with j =e^(i((2π)/3))    then factorize P(x) inside C[x]  decompose the fraction F=(1/P)
$${find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\:+{jx}^{\mathrm{2}} \right)^{{n}} −\mathrm{1} \\ $$$${with}\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{then}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$${decompose}\:{the}\:{fraction}\:{F}=\frac{\mathrm{1}}{{P}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *