Menu Close

find-the-sequence-u-n-wich-verify-u-n-u-n-1-cosn-




Question Number 134630 by mathmax by abdo last updated on 06/Mar/21
find the sequence u_n wich verify u_n +u_(n+1) =cosn
findthesequenceunwichverifyun+un+1=cosn
Answered by mathmax by abdo last updated on 07/Mar/21
u_n +u_(n+1) =cos(n) ⇒Σ_(k=0) ^(n−1)  (−1)^k (u_k +u_(k+1) ) =Σ_(k=0) ^(n−1) (−1)^k  cos(k) ⇒  u_0 +u_1 −(u_1 +u_2 )+....+(−1)^(n−2) (u_(n−2) +u_(n−1) )+(−1)^(n−1) (u_(n−1) +u_n )  =Σ_(k=0) ^(n−1) (−1)^k  cosk ⇒u_0 +(−1)^(n−1) u_n =Σ_(k=0) ^(n−1) (−1)^k  cosk ⇒  (−1)^(n−1) u_n =Σ_(k=0) ^(n−1) (−1)^k [cosk−u_0  ⇒  u_n =(−1)^(n−1)  Σ_(k=0) ^(n−1) (−1)^k cos(k)−(−1)^(n−1) u_o  ⇒  u_n =(−1)^n u_0 −(−1)^n  Σ_(k=0) ^(n−1) (−1)^k  cosk and  Σ_(k=0) ^(n−1) (−1)^k  cosk =Re(Σ_(k=0) ^(n−1) (−1)^k  e^(ik) ) we have  Σ_(k=0) ^(n−1) (−e^i )^k  =((1−(−e^i )^n )/(1−(−e^i ))) =((1−(−1)^n  e^(ni) )/(1+e^i ))  =((1−(−1)^n {cosn+isinn})/(1+cos1 +isin1))  =(((1−(−1)^n (cosn+isinn))(1+cos1−isin1))/((1+cos(1))^2  +sin^2 (1)))  rest to extract Re (of this quantity)....
un+un+1=cos(n)k=0n1(1)k(uk+uk+1)=k=0n1(1)kcos(k)u0+u1(u1+u2)+.+(1)n2(un2+un1)+(1)n1(un1+un)=k=0n1(1)kcosku0+(1)n1un=k=0n1(1)kcosk(1)n1un=k=0n1(1)k[cosku0un=(1)n1k=0n1(1)kcos(k)(1)n1uoun=(1)nu0(1)nk=0n1(1)kcoskandk=0n1(1)kcosk=Re(k=0n1(1)keik)wehavek=0n1(ei)k=1(ei)n1(ei)=1(1)neni1+ei=1(1)n{cosn+isinn}1+cos1+isin1=(1(1)n(cosn+isinn))(1+cos1isin1)(1+cos(1))2+sin2(1)resttoextractRe(ofthisquantity).

Leave a Reply

Your email address will not be published. Required fields are marked *