Menu Close

Find-the-simplest-form-for-T-1-3-1-3-




Question Number 142829 by liberty last updated on 06/Jun/21
 Find the simplest form for     T = (√(1+(√(−3)))) +(√(1−(√(−3))))
FindthesimplestformforT=1+3+13
Answered by EDWIN88 last updated on 06/Jun/21
Let (√a) +(√(−b)) = (√(1+(√(−3)))) with a>0 ,b>0  ⇒a−b+2i(√(ab)) = 1+i(√3) we get  { ((a−b=1)),((2(√(ab)) =(√3))) :}   squaring  { ((a^2 −2ab+b^2 =1...(1))),((4ab=3...(2))) :}  addition of (1) and (2) we have   a^2 +2ab+b^2  = 4 ⇒a+b = 2  now we solve  { ((a−b=1)),((a+b=2)) :} ⇒ { ((a=(3/2))),((b=(1/2))) :}  hence (√(1+(√(−3)))) = (√(3/2)) +(√(−(1/2)))  in a similar manner we obtain   (√(1−(√(−3)))) = (√(3/2))−(√(−(1/2)))   Therefore T= (√(3/2))+(√(−(1/2)))+(√(3/2))−(√(−(1/2)))   T = 2(√(3/2)) =(√6) □
Leta+b=1+3witha>0,b>0ab+2iab=1+i3weget{ab=12ab=3squaring{a22ab+b2=1(1)4ab=3(2)additionof(1)and(2)wehavea2+2ab+b2=4a+b=2nowwesolve{ab=1a+b=2{a=32b=12hence1+3=32+12inasimilarmannerweobtain13=3212ThereforeT=32+12+3212T=232=6◻
Commented by liberty last updated on 06/Jun/21
thank you
thankyou
Answered by mr W last updated on 06/Jun/21
1+(√(−3))=1+(√3)i=2e^((πi)/3)   ⇒(√(1+(√(−3))))=(√2)e^((πi)/6)   similarly  ⇒(√(1−(√(−3))))=(√2)e^(−((πi)/6))   (√(1+(√(−3))))+(√(1−(√(−3))))=(√2)(e^((πi)/6) +e^(−((πi)/6)) )  =(√2)×2×cos (π/6)=(√2)×2×((√3)/2)=(√6)
1+3=1+3i=2eπi31+3=2eπi6similarly13=2eπi61+3+13=2(eπi6+eπi6)=2×2×cosπ6=2×2×32=6
Commented by liberty last updated on 06/Jun/21
thank you
thankyou
Answered by mathmax by abdo last updated on 06/Jun/21
T=(√(1+(√(−3))+(√(1−(√(−3))))))  we have 1+(√(−3))=1+i(√3)=2((1/2)+i((√3)/2))=2e^((iπ)/3)  ⇒  (√(1+(√(−3))))=(√2)e^((iπ)/6)   also 1−(√(−3))=1−i(√3)=2e^(−((iπ)/3))  ⇒(√(1−(√(−3))))=(√2)e^(−((iπ)/6))  ⇒  T=(√2)(e^((iπ)/6)  +e^(−((iπ)/6)) ) =(√2)(2cos((π/6)))=2(√2).((√3)/2) =(√6)
T=1+3+13wehave1+3=1+i3=2(12+i32)=2eiπ31+3=2eiπ6also13=1i3=2eiπ313=2eiπ6T=2(eiπ6+eiπ6)=2(2cos(π6))=22.32=6

Leave a Reply

Your email address will not be published. Required fields are marked *