Question Number 142829 by liberty last updated on 06/Jun/21
$$\:{Find}\:{the}\:{simplest}\:{form}\:{for}\: \\ $$$$\:\:{T}\:=\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}\: \\ $$
Answered by EDWIN88 last updated on 06/Jun/21
$$\mathrm{Let}\:\sqrt{\mathrm{a}}\:+\sqrt{−\mathrm{b}}\:=\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:\mathrm{with}\:\mathrm{a}>\mathrm{0}\:,\mathrm{b}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{a}−\mathrm{b}+\mathrm{2}{i}\sqrt{\mathrm{ab}}\:=\:\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\mathrm{we}\:\mathrm{get}\:\begin{cases}{\mathrm{a}−\mathrm{b}=\mathrm{1}}\\{\mathrm{2}\sqrt{\mathrm{ab}}\:=\sqrt{\mathrm{3}}}\end{cases} \\ $$$$\:\mathrm{squaring}\:\begin{cases}{\mathrm{a}^{\mathrm{2}} −\mathrm{2ab}+\mathrm{b}^{\mathrm{2}} =\mathrm{1}…\left(\mathrm{1}\right)}\\{\mathrm{4ab}=\mathrm{3}…\left(\mathrm{2}\right)}\end{cases} \\ $$$$\mathrm{addition}\:\mathrm{of}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{2ab}+\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{4}\:\Rightarrow\mathrm{a}+\mathrm{b}\:=\:\mathrm{2} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{solve}\:\begin{cases}{\mathrm{a}−\mathrm{b}=\mathrm{1}}\\{\mathrm{a}+\mathrm{b}=\mathrm{2}}\end{cases}\:\Rightarrow\begin{cases}{\mathrm{a}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{b}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{hence}\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\:+\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{manner}\:\mathrm{we}\:\mathrm{obtain}\: \\ $$$$\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}\:=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}−\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}\: \\ $$$$\mathrm{Therefore}\:\mathrm{T}=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}+\cancel{\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}}+\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}−\cancel{\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}}\: \\ $$$$\mathrm{T}\:=\:\mathrm{2}\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\:=\sqrt{\mathrm{6}}\:\Box \\ $$
Commented by liberty last updated on 06/Jun/21
$${thank}\:{you} \\ $$
Answered by mr W last updated on 06/Jun/21
$$\mathrm{1}+\sqrt{−\mathrm{3}}=\mathrm{1}+\sqrt{\mathrm{3}}{i}=\mathrm{2}{e}^{\frac{\pi{i}}{\mathrm{3}}} \\ $$$$\Rightarrow\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}{e}^{\frac{\pi{i}}{\mathrm{6}}} \\ $$$${similarly} \\ $$$$\Rightarrow\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}{e}^{−\frac{\pi{i}}{\mathrm{6}}} \\ $$$$\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\left({e}^{\frac{\pi{i}}{\mathrm{6}}} +{e}^{−\frac{\pi{i}}{\mathrm{6}}} \right) \\ $$$$=\sqrt{\mathrm{2}}×\mathrm{2}×\mathrm{cos}\:\frac{\pi}{\mathrm{6}}=\sqrt{\mathrm{2}}×\mathrm{2}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\sqrt{\mathrm{6}} \\ $$
Commented by liberty last updated on 06/Jun/21
$${thank}\:{you} \\ $$
Answered by mathmax by abdo last updated on 06/Jun/21
$$\mathrm{T}=\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{1}+\sqrt{−\mathrm{3}}=\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2e}^{\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow \\ $$$$\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{6}}} \\ $$$$\mathrm{also}\:\mathrm{1}−\sqrt{−\mathrm{3}}=\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{6}}} \:\Rightarrow \\ $$$$\mathrm{T}=\sqrt{\mathrm{2}}\left(\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{6}}} \:+\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{6}}} \right)\:=\sqrt{\mathrm{2}}\left(\mathrm{2cos}\left(\frac{\pi}{\mathrm{6}}\right)\right)=\mathrm{2}\sqrt{\mathrm{2}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\sqrt{\mathrm{6}} \\ $$