Menu Close

find-the-singular-point-1-e-z-z-2-2-sin-z-z-help-me-sir-




Question Number 138384 by mohammad17 last updated on 13/Apr/21
find the singular point     (1) (e^z /z^2 )    (2)((sin(z))/z)    help me sir
$${find}\:{the}\:{singular}\:{point}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\frac{{e}^{{z}} }{{z}^{\mathrm{2}} } \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\frac{{sin}\left({z}\right)}{{z}} \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Answered by Mathspace last updated on 13/Apr/21
f(z)=(e^z /z^2 )  the singkular point is0  and  Re(f,o)=lim_(z→0) (1/((2−1)!)){z^2 f(z)}^()1))     =lim_(z→0)   {e^z }^((1))  =lim_(z→0)  e^z =1
$${f}\left({z}\right)=\frac{{e}^{{z}} }{{z}^{\mathrm{2}} }\:\:{the}\:{singkular}\:{point}\:{is}\mathrm{0} \\ $$$${and}\:\:{Re}\left({f},{o}\right)={lim}_{{z}\rightarrow\mathrm{0}} \frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{{z}^{\mathrm{2}} {f}\left({z}\right)\right\}^{\left.\right)\left.\mathrm{1}\right)} \\ $$$$ \\ $$$$={lim}_{{z}\rightarrow\mathrm{0}} \:\:\left\{{e}^{{z}} \right\}^{\left(\mathrm{1}\right)} \:={lim}_{{z}\rightarrow\mathrm{0}} \:{e}^{{z}} =\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *