Menu Close

Find-the-smallest-value-5x-16-x-21-over-positive-value-of-x-




Question Number 141136 by bobhans last updated on 16/May/21
    Find the smallest value       5x + ((16)/x) + 21 over positive      value of x
$$\:\:\:\:{Find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:\:\mathrm{5}{x}\:+\:\frac{\mathrm{16}}{{x}}\:+\:\mathrm{21}\:{over}\:{positive}\: \\ $$$$\:\:\:{value}\:{of}\:{x}\: \\ $$
Answered by iloveisrael last updated on 16/May/21
 ⇒ 5x & ((16)/x) have a constant product  80 hence the minimum is achieved  by equating these 5x = ((16)/x) or  x = (√((16)/5)) = (4/( (√5))) . Our conclusion  is that smallest value of    5x+((16)/x) +21 = 10x + 21   = ((40)/( (√5))) +21 = 8(√5) +21
$$\:\Rightarrow\:\mathrm{5}{x}\:\&\:\frac{\mathrm{16}}{{x}}\:{have}\:{a}\:{constant}\:{product} \\ $$$$\mathrm{80}\:{hence}\:{the}\:{minimum}\:{is}\:{achieved} \\ $$$${by}\:{equating}\:{these}\:\mathrm{5}{x}\:=\:\frac{\mathrm{16}}{{x}}\:{or} \\ $$$${x}\:=\:\sqrt{\frac{\mathrm{16}}{\mathrm{5}}}\:=\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}}\:.\:{Our}\:{conclusion} \\ $$$${is}\:{that}\:{smallest}\:{value}\:{of}\: \\ $$$$\:\mathrm{5}{x}+\frac{\mathrm{16}}{{x}}\:+\mathrm{21}\:=\:\mathrm{10}{x}\:+\:\mathrm{21}\: \\ $$$$=\:\frac{\mathrm{40}}{\:\sqrt{\mathrm{5}}}\:+\mathrm{21}\:=\:\mathrm{8}\sqrt{\mathrm{5}}\:+\mathrm{21} \\ $$
Answered by EDWIN88 last updated on 16/May/21
say f(x)=5x+16x^(−1) +21   f ′(x)=5−((16)/x^2 ) = 0 ⇒x^2 =((16)/5)   since x >0 then x = (√((16)/5)) = ((4(√5))/5)   minimum f(((4(√5))/5))= 4(√5) +((16^4 .5)/(4(√5))) +21 = 8(√5) +21
$$\mathrm{say}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{16x}^{−\mathrm{1}} +\mathrm{21} \\ $$$$\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{5}−\frac{\mathrm{16}}{\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{0}\:\Rightarrow\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{5}}\: \\ $$$$\mathrm{since}\:\mathrm{x}\:>\mathrm{0}\:\mathrm{then}\:\mathrm{x}\:=\:\sqrt{\frac{\mathrm{16}}{\mathrm{5}}}\:=\:\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$$\:\mathrm{minimum}\:\mathrm{f}\left(\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{5}}\right)=\:\mathrm{4}\sqrt{\mathrm{5}}\:+\frac{\cancel{\mathrm{16}}\:^{\mathrm{4}} .\mathrm{5}}{\cancel{\mathrm{4}}\sqrt{\mathrm{5}}}\:+\mathrm{21}\:=\:\mathrm{8}\sqrt{\mathrm{5}}\:+\mathrm{21} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *