Menu Close

Find-the-smallest-value-of-x-2-y-2-among-all-values-of-x-amp-y-satisfying-3x-y-20-




Question Number 141475 by bramlexs22 last updated on 19/May/21
 Find the smallest value of    (√(x^2 +y^2 )) among all values of   x & y satisfying 3x−y = 20
Findthesmallestvalueofx2+y2amongallvaluesofx&ysatisfying3xy=20
Answered by MJS_new last updated on 19/May/21
y=3x−20  f(x)=(√(10(x^2 −12x+40)))  x=t+6  f(t)=(√(10(t^2 +4)))  min (f(t)) =2(√(10))
y=3x20f(x)=10(x212x+40)x=t+6f(t)=10(t2+4)min(f(t))=210
Answered by mathmax by abdo last updated on 19/May/21
ϕ(x)=(√(x^2 +y^2 ))  and y=3x−20 ⇒ϕ(x)=(√(x^2  +(3x−20)^2 ))  =(√(x^2  +9x^2 −120x +400))=(√(10x^2 −120x +400))  ϕ^′ (x)=((20x−120)/(2(√(10x^2 −120x))+400)) =((10x−60)/( (√(10x^2 −120x+400)))) =((10(x−6))/( (√(....))))  ϕ^′ (x)=0 ⇒x=6  and ϕ^′ (x)>0 ⇒x>6  ϕ^′ (x)<0 ⇒x<6 ⇒inf ϕ(x)=ϕ(6)=(√(6^2  +(18−20)))^2 =(√(36+4))  =(√(40))=2(√(10))
φ(x)=x2+y2andy=3x20φ(x)=x2+(3x20)2=x2+9x2120x+400=10x2120x+400φ(x)=20x120210x2120x+400=10x6010x2120x+400=10(x6).φ(x)=0x=6andφ(x)>0x>6φ(x)<0x<6infφ(x)=φ(6)=62+(1820)2=36+4=40=210

Leave a Reply

Your email address will not be published. Required fields are marked *