Menu Close

find-the-sum-0-2-1-1-2-3-2-2-5-




Question Number 143846 by mathmax by abdo last updated on 18/Jun/21
find the sum  (((0!)^2 )/(1!)) +(((1!)^2 )/(3!)) +(((2!)^2 )/(5!)) +.....
findthesum(0!)21!+(1!)23!+(2!)25!+..
Answered by Ar Brandon last updated on 18/Jun/21
(((n!)(n!))/((n+n+1)!))=((Γ(n+1)Γ(n+1))/(Γ(2n+2)))=β(n+1, n+1)  S=(((0!)^2 )/(1!)) +(((1!)^2 )/(3!)) +(((2!)^2 )/(5!)) +∙∙∙=Σ_(n=0) ^∞ β(n+1,n+1)     =∫_0 ^1 Σ_(n=0) ^∞ x^n (1−x)^n =∫_0 ^1 (1/(1−(x−x^2 )))dx      =∫_0 ^1 (dx/(x^2 −x+1))=∫_0 ^1 (dx/((x−(1/2))^2 +(3/4)))      =[(2/( (√3)))arctan(((2x−1)/( (√3))))]_0 ^1 =(2/( (√3)))((π/6)+(π/6))=((2(√3)π)/9)
(n!)(n!)(n+n+1)!=Γ(n+1)Γ(n+1)Γ(2n+2)=β(n+1,n+1)S=(0!)21!+(1!)23!+(2!)25!+=n=0β(n+1,n+1)=01n=0xn(1x)n=0111(xx2)dx=01dxx2x+1=01dx(x12)2+34=[23arctan(2x13)]01=23(π6+π6)=23π9
Commented by mathmax by abdo last updated on 19/Jun/21
thank you sir
thankyousir
Commented by Ar Brandon last updated on 19/Jun/21
Your welcome, Sir.
Yourwelcome,Sir.

Leave a Reply

Your email address will not be published. Required fields are marked *